1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474: 1823-36.
2.
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837-48.
3.
Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnol 2014; 32: 834-41.
4.
Almeida A, Nayfach S, Boland M, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021; 39: 105-14.
5.
Hugon P, Dufour JC, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 2015; 15: 1211-9.
6.
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10: 159-69.
7.
Salzman NH. Microbiota–immune system interaction: an uneasy alliance. Curr Opin Microbiol 2011; 14: 99-105.
8.
Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016; 16: 90.
9.
Lin D, Wang R, Luo J, et al. The core and distinction of the gut microbiota in Chinese populations across geography and ethnicity. Microorganisms 2020; 8: 1579.
10.
Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Arch Microbiol 2018; 200: 677-84.
11.
Graf D, Di Cagno R, Fåk F, et al. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015; 26: 26164.
12.
Wilson AS, Koller KR, Ramaboli MC, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci 2020; 65: 723-40.
13.
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek 2020; 113: 2019-40.
14.
Tooley KL. Effects of the human gut microbiota on cognitive performance, brain structure and function: a narrative review. Nutrients 2020; 12: 3009.
15.
Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013; 34: 39-58.
16.
Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol 2016; 22: 2219-41.
17.
Bastiaanssen TFS, Cowan CSM, Claesson MJ, et al. Making sense of … the microbiome in psychiatry. Int J Neuropsychopharmacol 2019; 22: 37-52.
18.
Green PHR, Cellier C. Celiac disease. N Engl J Med 2007; 357: 1731-43.
19.
Lionetti E, Catassi C. The role of environmental factors in the development of celiac disease: what is new? Diseases 2015; 3: 282-93.
20.
Parzanese I, Qehajaj D, Patrinicola F, et al. Celiac disease: from pathophysiology to treatment. World J Gastrointest Pathophysiol 2017; 8: 27-38.
21.
Caminero A, Herrán AR, Nistal E, et al. Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiol Ecol 2014; 88: 309-19.
22.
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018; 50: 1-9.
23.
Mozafarybazargany M, Khonsari M, Sokoty L, et al. The effects of probiotics on gastrointestinal symptoms and microbiota in patients with celiac disease: a systematic review and meta-analysis on clinical trials. Clin Exp Med 2023; 23: 2773-88.
24.
Segura V, Ruiz-Carnicer Á, Sousa C, et al. New insights into non-dietary treatment in celiac disease: emerging therapeutic options. Nutrients 2021; 13: 2146.
25.
Tang Q, Jin G, Wang G, et al. Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 2020; 10: 151.
26.
Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437: 376-80.
27.
Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 2017; 243: 16-24.
28.
Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol Med 2016; 13: 3-11.
29.
Zhang W, Cui H, Wong LJC. Application of next generation sequencing to molecular diagnosis of inherited diseases. Top Curr Chem 2014; 336: 19-45.
30.
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genetics 2014; 30: 418-26.
31.
Kanzi AM, San JE, Chimukangara B, et al. Next generation sequencing and bioinformatics analysis of family genetic inheritance. Front Genet 2020; 11: 544162.
32.
Cao Y, Fanning S, Proos S, et al. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol 2017; 8: 1829.
33.
Grada A, Weinbrecht K. Next-generation sequencing: methodology and application. J Invest Dermatol 2013; 133: e11.
34.
Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges. BioTechniques 2014; 56: 61-77.
35.
Knierim E, Lucke B, Schwarz JM, et al. Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS One 2011; 6: e28240.
36.
Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: an overview. Human Immunol 2021; 82: 801-11.
37.
Slatko BE, Gardner AF, Ausubel FM. Overview of next generation sequencing technologies. Curr Protoc Mol Biol 2018; 122: e59.
38.
Magi A, Benelli M, Gozzini A, et al. Bioinformatics for next generation sequencing data. Genes 2010; 1: 294-307.
39.
Petrosino JF, Highlander S, Luna RA, et al. Metagenomic pyrosequencing and microbial identification. Clin Chem 2009; 55: 856-66.
40.
Drancourt M, Raoult D. Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. J Clin Microbiol 2005; 43: 4311-5.
41.
Sanschagrin S, Yergeau E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp 2014; 90: 51709.
42.
Gupta S, Mortensen MS, Schjørring S, et al. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Commun Biol 2019; 2: 291.
43.
Boers SA, Jansen R, Hays JP. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 2019; 38: 1059-70.
44.
Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016; 469: 967-77.
45.
Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J Animal Sci 2022; 100: skab346.
46.
Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 2014; 5; 209.
47.
Wensel CR, Pluznick JL, Salzberg SL, Sears CL. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest 2022; 132: e154944.
48.
Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta 2015; 439: 231-50.
49.
Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 2017; 8: 108.
50.
Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods 2018; 153: 139-47.
51.
Rezasoltani S, Ahmadi Bashirzadeh D, Nazemalhosseini Mojarad E, et al. Signature of gut microbiome by conventional and advanced analysis techniques: advantages and disadvantages. Middle East J Dig Dis 2020; 12: 5-11.
52.
Moter A, Göbel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 2000; 41: 85-112.
53.
La Reau AJ, Strom NB, Filvaroff E, et al. Shallow shotgun sequencing reduces technical variation in microbiome analysis. Sci Rep 2023; 13: 7668.
54.
Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the information content of shallow shotgun metagenomics. Msystems 2018; 3: e00069-18.
55.
Frickmann H, Zautner AE, Moter A, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43: 263-93.56.
56.
Arrigucci R, Bushkin Y, Radford F, et al. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry. Nat Protoc 2017; 12: 1245-60.57.
57.
Yilmaz S, Haroon MF, Rabkin BA, et al. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J 2010; 4: 1352-6.
58.
Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998; 73: 127-41.
59.
Green SJ, Leigh MB, Neufeld JD. Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In: Handbook of Hydrocarbon and Lipid Microbiology. Timmis KN (ed.). Springer 2010; 4137-58.
60.
Nakatsu CH. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 2007; 71: 562-71.61.
61.
Lagier JC, Dubourg G, Million M, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018; 16: 540-50.
62.
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635-8.
63.
Browne HP, Forster SC, Anonye BO, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543-6.64.
64.
Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1: 16203.65.
65.
Diakite A, Dubourg G, Dione N, et al. Optimization and standardization of the culturomics technique for human microbiome exploration. Sci Rep 2020; 10: 9674.66.
66.
Dione N, Khelaifia S, La Scola B, et al. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. Clin Microbiol Infect 2016; 22: 53-8.
67.
Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49: 543-51.
68.
Singh P, Rawat A, Al-Jarrah B, et al. Distinctive microbial signatures and gut-brain crosstalk in pediatric patients with coeliac disease and type 1 diabetes mellitus. Int J Mol Sci 2021; 22: 1511.
69.
Quagliariello A, Aloisio I, Bozzi Cionci N, et al. Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients 2016; 8: 660.
70.
Whittaker RH. Evolution and measurement of species diversity. Taxon 1972; 21: 213-51.
71.
Rastogi S, Singh A. Gut microbiome and human health: exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13: 1042189.
72.
Iljazovic A, Roy U, Gálvez EJC, et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 2021; 14: 113-24.
73.
Henke MT, Kenny DJ, Cassilly CD, et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA 2019; 116: 12672-7.
74.
Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014; 588: 4223-33.
75.
Zafeiropoulou K, Nichols B, Mackinder M, et al. Alterations in intestinal microbiota of children with celiac disease at the time of diagnosis and on a gluten-free diet. Gastroenterology 2020; 159: 2039-51.e20.
76.
Primec M, Klemenak M, Di Gioia D, et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF- and short-chain fatty acids. Clin Nutr 2019; 38: 1373-81.
77.
Sample D, Fouhse J, King S, et al. Baseline fecal microbiota in pediatric patients with celiac disease is similar to controls but dissimilar after 1 year on the gluten-free diet. JPGN Rep 2021; 2: e127.
78.
Girdhar K, Dogru YD, Huang Q, et al. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. Microbiome 2023; 11: 9.
79.
Milletich PL, Ahrens AP, Russell JT, et al. Gut microbiome markers in subgroups of HLA class II genotyped infants signal future celiac disease in the general population: ABIS study. Front Cell Infect Microbiol 2022; 12: 920735.
80.
Olivares M, Walker AW, Capilla A, et al. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome 2018; 6: 36.
81.
Rintala A, Riikonen I, Toivonen A, et al. Early fecal microbiota composition in children who later develop celiac disease and associated autoimmunity. Scand J Gastroenterol 2018; 53: 403-9.
82.
Constante M, Libertucci J, Galipeau HJ, et al. Biogeographic variation and functional pathways of the gut microbiota in celiac disease. Gastroenterology 2022; 163: 1351-63.e15.
83.
Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev 2019; 32: 10.1128/cmr.00060-18.
84.
Panelli S, Capelli E, Lupo GFD, et al. Comparative study of salivary, duodenal, and fecal microbiota composition across adult celiac disease. J Clin Med 2020; 9: 1109.
85.
Nobel YR, Rozenberg F, Park H, et al. Lack of effect of gluten challenge on fecal microbiome in patients with celiac disease and non-celiac gluten sensitivity. Clin Transl Gastroenterol 2021; 12: e00441.
86.
Nylund L, Hakkola S, Lahti L, et al. Diet, perceived intestinal well-being and compositions of fecal microbiota and short chain fatty acids in oat-using subjects with celiac disease or gluten sensitivity. Nutrients 2020; 12: 2570.
87.
D’Argenio V, Casaburi G, Precone V, et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. Am J Gastroenterol 2016; 111: 879-90.
88.
Shi T, Feng Y, Liu W, et al. Characteristics of gut microbiota and fecal metabolomes in patients with celiac disease in Northwest China. Front Microbiol 2022; 13: 1020977.
89.
Palmieri O, Castellana S, Bevilacqua A, et al. Adherence to gluten-free diet restores alpha diversity in celiac people but the microbiome composition is different to healthy people. Nutrients 2022; 14: 2452.
90.
Vacca M, Celano G, Calabrese FM, et al. The controversial role of human gut Lachnospiraceae. Microorganisms 2020; 8: 573.
91.
Bodkhe R, Shetty SA, Dhotre DP, et al. Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front Microbiol 2019; 10: 164.
92.
Garcia-Mazcorro JF, Rivera-Gutierrez X, Cobos-Quevedo ODJ, et al. First insights into the gut microbiota of Mexican patients with celiac disease and non-celiac gluten sensitivity. Nutrients 2018; 10: 1641.
93.
Pellegrini S, Sordi V, Bolla AM, et al. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metabol 2017; 102: 1468-77.
94.
Nistal E, Caminero A, Herrán AR, et al. Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J Appl Microbiol 2016; 120: 1691-700.
95.
El Mouzan M, Al-Hussaini A, Serena G, et al. Microbiota profile of new-onset celiac disease in children in Saudi Arabia. Gut Pathogens 2022; 14: 37.
96.
Senicar T, Kukovicic A, Tkalec V, et al. Comparison of microbial populations in saliva and feces from healthy and celiac adolescents with conventional and molecular approaches after cultivation on gluten-containing media: an exploratory study. Microorganisms 2021; 9: 2375.
97.
Leonard MM, Valitutti F, Karathia H, et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci USA 2021; 118: e2020322118.
98.
Francavilla A, Ferrero G, Pardini B, et al. Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk. Gut Microbes 2023; 15: 2172955.
99.
Collado MC, Donat E, Ribes-Koninckx C, et al. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 2008; 8: 232.
100.
Collado MC, Donat E, Ribes-Koninckx C, et al. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 2009; 62: 264-9.
101.
Kalliomäki M, Satokari R, Lähteenoja H, et al. Expression of microbiota, toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 2012; 54: 727-32.
102.
Naseri K, Dabiri H, Olfatifar M, et al. Evaluation of gut microbiota of Iranian patients with celiac disease, non-celiac wheat sensitivity, and irritable bowel syndrome: are there any similarities? BMC Gastroenterol 2023; 23: 15.
103.
Soheilian-Khorzoghi M, Rezasoltani S, Moheb-Alian A, et al. Impact of nutritional profile on gut microbiota diversity in patients with celiac disease. Curr Microbiol 2022; 79: 129.
104.
De Palma G, Nadal I, Medina M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 2010; 10: 63.
105.
Quévrain E, Maubert MA, Michon C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 2016; 65: 415-25.
106.
Nadal I, Donant E, Ribes-Koninckx C, et al. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 2007; 56: 1669-74.
107.
De Palma G, Capilla A, Nadal I, et al. Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 2010; 12: 1-10.
108.
Sanz Y, Sánchez E, Marzotto M, et al. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 2007; 51: 562-8.
109.
Sanchez E, Donat E, Ribes-Koninckx C, et al. Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 2010; 63: 1105-11.
110.
Schippa S, Iebba V, Barbato M, et al. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol 2010; 10: 175.
111.
Nistal E, Caminero A, Vivas S, et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 2012; 94: 1724-9.
112.
Caminero A, Nistal E, Herrán AR, et al. Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr 2015; 114: 1157-67.
113.
Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol 2011; 11: 219.
114.
Wacklin P, Kaukinen K, Tuovinen E, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 2013; 19: 934-41.
115.
Kopečný J, Mrázek J, Fliegerová K, et al. The intestinal microflora of childhood patients with indicated celiac disease. Folia Microbiol 2008; 53: 214-6.
116.
Sánchez E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. J Clin Pathol 2012; 65: 830-4.
117.
Lorenzo Pisarello MJ, Vintiñi EO, González SN, et al. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Can J Microbiol 2015; 61: 32-7.
118.
Sánchez E, Donat E, Ribes-Koninckx C, et al. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol 2013; 79: 5472-9.
119.
Caminero A, Herrán AR, Nistal E, et al. Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. FEMS Microbiol Ecol 2014; 88: 309-19.