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Introduction
Age-related macular degeneration (AMD) is a disease of the 

central retina, the macula, characterized by progressive dege-
neration of the retina, retinal pigmented epithelium (RPE) and 
choroid. On the degeneration of the macula, central vision is 
impaired, or even lost, and peripheral vision dominates, or re-
mains. In addition to central vision impairment, AMD patients 
suffer also from impairment of distance visual acuity, near vi-
sual acuity, color discrimination, contrast sensitivity and other 
sense functions. They have problems with reading, recognizing 
other people’s faces, playing or even watching sports (1). It is 
considered as the main cause of vision loss and blindness in in-
dividuals aged over 65 (2). Mechanisms underlying occurrence 
and progression of this disease are largely unknown.

Oxidative stress and damage caused by its product, mainly 
reactive oxygen species (ROS), may be implicated in the patho-
genesis of AMD, but this concept remains unproven (3). High 
polyunsaturated fatty acid content in photoreceptor outer seg-
ments combined with oxygen-rich environment may provide re-
active oxygen species, but the source of oxidative stress play-
ing a role in the pathogenesis of AMD is still unknown. There 
are experimental data and hypotheses on several factors, which 
can contribute to this disease, with iron ions among them.

Iron homeostasis
Iron is an element which is essential for cellular homeosta-

sis. The lack of it may lead to serious disturbances in the cell’s 
functioning, which, in consequence, may result in a disease 
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phenotype of an organism. On the other hand, iron ions can 
contribute, through the Fenton reaction, to the production of 
reactive oxygen species (ROS), including free radicals, which 
can be toxic for the cell. Iron ions are carried in the bloodstream 
attached to transferrin (Tf), an 80 kDa transporter protein, upon 
binding to its receptor (4). Iron homeostasis is managed by the 
regulation of the expression of iron-regulatory proteins (IRPs), 
which can bind iron-responsive elements (IREs) on the mRNA 
of regulated proteins (5). Most non-heme iron in the circulation 
is bound to transferrin, which can bind two molecules of ferric 
(3+) iron with a high affinity (4). Adults normally have approxi-
mately 3 mg of circulating non-heme iron, with transferrin bin-
ding sites only approximately 30% saturated.

Most of the metabolically active iron in the cell is processed 
in the mitochondria, which contain their own mitochondrial fer-
ritin (MtF), distinct from its cytoplasmatic counterpart (6). MtF 
has been shown to possess ferroxidase activity and its function 
is unclear. The results of some studies suggest that MtF may 
protect mitochondria from iron-induced oxidative damage, sin-
ce its elevated level was observed in the mitochondria of iron-
overloaded sideroblasts in sideroblastic anemia (7).

Iron that is not utilized or stored by the cell is extruded by fer-
roportin, a transport protein (8). Iron transported by ferroportin is in 
ferrous state and must be oxidized to be accepted by transferrin. 
This process is assisted by several proteins, including cerulopla-
smin, a copper binding protein, containing about 95% of plasma.

As mentioned above, the interaction between IRPs and IREs 
is essential for the iron homeostasis. This interaction allows the 
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cell to regulate iron uptake, sequestration, and export according 
to their status. IRPs detect intracellular iron status and, in the 
case of deficiency, bind to IREs on the mRNA of the regulated 
protein. In particular, the binding of IRPs to the IRE of ferritin, di-
sturb the process of translation, resulting in a decreased ferritin 
levels in iron deficiency. Iron is absorbed in the intestine, but 
very little iron is excreted, leading to an increase in tissue iron 
levels with age.

Iron ions in the retina
Retina is separated from the bloodstream by the blood-retina 

barrier. Transferrin cannot diffuse trough the blood-brain barrier 
and the same applies to the barrier between blood and retina, 
although transferrin can be found in the retina. The expression 
of transferrin mRNA was detected in RPE cells, which could 
suggest that RPE is the main site of the transferrin synthesis. 
Transferrin with iron can be endocytosed into cells following 
binding to the cell surface transferrin receptor (9). Transferrin 
receptors were detected in RPE.

Iron complexed with transferrin may be taken up by trans-
ferrin receptors on the inner segments of photoreceptors. It was 
shown that rat’s photoreceptor inner segments were immuno-
positive for transferrin receptor (10). Transferrin is also present 
in the aqueous and vitreous humor, which suggests that they 
may constitute a route for iron delivery to ocular cells (11,12). 
Some experimental data suggests that part of the transferrin 
can be synthesized in the eye (13). Iron can be transported 
across the blood-retina barrier by the transcytosis of Tf-bound 
iron and endocytosis of Tf-bound iron followed by the removal 
of iron from Tf within endosomes (14). In the same research 
it was suggested that there was a mechanism regulating iron 
uptake by the retina. This mechanism decreases the uptake 
when the retina has sufficient amount of it.

It has been reproted that iron ions in the retina may be also 
transported by divalent metal transporter-1 (DMT1), moving one 
atom of ferrous iron and a proton in the same direction. DMT1 
was localized in rod bipolar cell bodies, photoreceptor inner 
bodies, rod bipolar cell axon termini and horizontal cell bodies 
(15). Another protein which can be involved in iron transport 
in the retina is Dexras1, a 30 kDa protein belonging to the Ras 
subfamily. It can be induced by the activation of some recep-
tors to signal iron uptake in the brain (16). Iron in the cell is 
primarily stored in cytoplasmic ferritin, one molecule of which 
can hold about 4500 iron molecules (17). Ferritin has heavy and 
light subunits and it is its central core that is responsible for 
iron binding. Although ferritin is a cytoplasmatic protein, it can 
be found in the nucleus of corneal epithelial cells, where it likely 
sequesters iron to prevent UV-induced DNA damage (18).

Another protein which can be involved in iron homeostasis, 
ceruloplasminhas ferroxidase activity and oxidizes iron from 
Fe2+ to Fe3+. This activity represents antioxidant properties of 
ceruloplasmin, since this is Fe2+ which catalyzes free radicals 
production via the Fenton reaction. Moreover, ceruloplasmin 
facilitates iron export by the same reaction, since only ferrous 
iron can be exported across the plasma membrane, but only fer-
ric iron can be taken up by transferrin (19).

Therefore, iron supplied with the diet and iron coming from 
the environment can both be present in the retina. Moreover, it 

was observed that retinal iron levels are higher in maculas from 
post mortem donors aged over 65 than in those younger than 
65 (20). This is consistent with the effect of iron accumulation 
with age. Obviously, this iron accumulation is potentially toxic.

Iron in AMD
Results of some research suggest that iron ions may contri-

bute to the pathogenesis of AMD. Probably the most direct evi-
dence for the involvement of iron ions in the etiology of AMD 
arises from the results of post-mortem research comparing the 
iron content in the macula of AMD patients and sex- and age-
matched individuals without visual disturbances (21). Moreover, 
it was shown in the same study that the retinas from AMD pa-
tients had more transferrin than retinas persons without AMD. 
AMD patients showed not only iron ions themselves, but also hi-
gher concentrations of transferrin than in an age-matched control 
group (22). However, the fact that the retinas of AMD patients 
had more iron and transferrin than those of healthy subjects does 
not indicate unambiguously that iron is the cause of AMD, for it 
can be a byproduct of AMD pathology. Transferrin was reported 
to be upregulated at the mRNA and protein levels in patients with 
AMD compared to age-matched healthy controls (23).

Through its involvement in the Fenton reaction, iron is implica-
ted in the oxidative stress, which, in turn, can be involved in the 
pathogenesis of AMD. Therefore, a link between iron and AMD 
seems to be straigthforward. Moreover, it seems that antioxidants 
and iron chelators can be beneficial in preventing and curing AMD. 
But in fact, the source of oxidants, which may play a role in the 
etiology of AMD, is unknown. The thesis that iron can be this sour-
ce is controversial, albeit – in our opinion – rational.

It is remarkable that iron content in the retina increases 
with age, as shown in eyes of individuals below the age of 35 
compared with subjects older than 65 (22). An early onset of 
macular drusen-like opacities was reported in a patient with re-
tinal iron overload resulting from the hereditary disease acerulo-
plasminemia. Mice with the iron overload in RPE resulting from 
disturbances in the iron exporter celuroplazmin developed a reti-
nal degeneration with some features of AMD, including sub-RPE 
deposits and subretinal neovascularization (24)).

An intraocular iron overload was shown to initiate oxidative 
damage to the retina induced by superoxide radicals in pho-
toreceptor inner segments (25). Therefore, if we assume that 
oxidative damage to the retina can be a prerequisite to AMD, 
iron ions can initiate a cascade of events leading to the deve-
lopment of the disease.

If iron indeed plays a role in the pathogenesis of AMD, iron 
chelators could be effective in protecting against the patholo-
gical effects of iron. Moreover, if we assume that the harmful 
effect of iron is carried out through oxidative stress, similar 
protective effects should be manifested following antioxidant 
supplementation. In fact, the results obtained in the Age-Rela-
ted Eye Disease Study have shown that substances recognized 
as antioxidants: zinc, vitamin C, vitamin E and β-carotene may 
slow down the progression of AMD (26).

Concluding remarks
In the light of a very likely role of iron in the pathogenesis of 

AMD it seems imperative to establish the relationship betwe-
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en dietary iron and retinal iron. Until then, patients with reti-
nal disease, including AMD, should avoid taking iron as dietary 
supplement and eating red meat, unless they are instructed to 
do so due to disturbances in iron homeostasis, such as iron de-
ficiency anemia. It also seems important to consider the role of 
iron ions in the degeneration of the retina in general, for it can 
potentiate the effect of aging in AMD.

Since studies on antioxidants in AMD brought promising re-
sults, they could inspire their expansion by using iron chelators 
to modulate the occurrence and/ or progression of AMD. It is 
justified by the reports suggesting that iron chelation may play 
a role in the treatment of a number of neurological degenerative 
diseases such as Alzheimer’s disease and Parkinson’s disease, 
Huntington’s disease and others (27,28). However, from an oph-
thalmologic point of view, considering iron chelation as a thera-
peutic or preventive strategy against AMD must be done with 
great caution, since in some cases this process may induce 
retinal toxicity (29).

The research on the role of iron in AMD should also invo-
lve a search for a correlation between markers of AMD and 
polymorphism of the genes coding for proteins involved in iron 
transport and storage in the retina: ferritin, ceruloplasmin, ferro-
protin and others. The results of such studies may be useful for 
constructing a microarray for the assessment of the risk of AMD 
occurrence and progression linked with disturbances of iron ho-
meostasis. More detailed study should be also directed to a role 
of cerulopasmin in AMD, since it can play a pronounced role in 
the iron homeostasis and exert an antioxidant effect.

In summary we can state that there is no doubts that di-
sturbed homeostasis of iron is associated with AMD, but the 
question whether it is the reason or a result of AMD remains 
open.
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