Microbial profile of biliary tract infection in patients undergoing therapeutic endoscopic retrograde cholangiopancreatography (ERCP), and baseline risk factors predicting microbial growth and post-ERCP cholangitis

Hina Ismail, Raja Taha Yaseen Khan, Syed Mudassir Laeeq, Zain Majid, Abbas Ali Tasneem, Farina M. Hanif, Nasir Hasan Luck

Department of Hepato-gastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan

Gastroenterology Rev DOI: https://doi.org/10.5114/pg.2024.136226

Key words: bile culture, endoscopic retrograde cholangiopancreatography, post-endoscopic retrograde cholangiopancreatography cholangitis.

Address for correspondence: Raja Taha Yaseen Khan, Department of Hepato-gastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan, phone: 00923042613720, e-mail: raja_taha101488@hotmail.com

Abstract

Introduction: Stasis of bile flow can result in microbial colonization of the biliary tree. Cholangitis is a common adverse event linked to endoscopic retrograde cholangiopancreatography (ERCP).

Aim: To establish the bacterial profiles isolated from the bile sample and to evaluate the pre-ERCP risk factors predicting the microbial growth and development of post-ERCP cholangitis (PEC).

Material and methods: This was a prospective cohort study, which was conducted at the Department of Hepato-gastroenterology, SIUT from 1 January 2021 to 31 December 2021. Patients of either gender undergoing index ERCP procedure were included in the study. All the patients underwent ERCP, and bile culture (BC) aspirated immediately after cannulation was achieved prior to the contrast injection. There were 2 outcome variables. One was the presence or absence of organisms in bile culture, and the second one was the development of PEC.

Results: The total number of patients was 280. Bile culture was positive in 195 (69.6%) patients, and post-ERCP cholangitis developed in 187 (66.8%) patients. The most common organism in BC was *Escherichia coli* (*E. coli*), in 82 (42%) patients. History of jaundice, abdominal pain, and weight loss on admission along with ERCP performed for common bile duct (CBD) stricture were independent predictors of positive BC and PEC, while advanced age was an additional risk factor for PEC.

Conclusions: Microbial profile and risk factors for positive BC and PEC were evaluated. Advanced age, pre-operative jaundice, and prolonged biliary stasis are the independent risk factors for these conditions.

Introduction

The diagnosis and treatment of many pancreaticobiliary disorders requires endoscopic retrograde cholangiopancreatography (ERCP). The sterility of the bile duct is established by the flushing action of bile and the bacteriostatic effects of bile salts [1]. Stasis or obstruction of bile flow can result in bacterial colonization of the biliary tree [2]. The most common organisms seen in biliary tract infection are *Escherichia coli*, *Klebsiella*, and *Enterococcus* species [3]. Studies have revealed that 0.5% to 3% of the cases undergoing ERCP developed cholangitis after ERCP [4, 5]. Factors predisposing to the development of post-ERCP cholangitis (PEC) include severe nature of obstruction, tight stricture needing long duration of ERCP, lack of sterile technique, incomplete drainage, and amount of dye injected into an obstructed system [6].

PEC not only increases the length of stay in hospital and hence financial burden on the patients, but also increases the morbidity and mortality. Complications of PEC include development of sepsis, cholangitic liver abscess, and acute renal injury. The reported mortality due to cholangitis is 4.5% [6].

Because the development of PEC carries important clinical implications, it is essential to identify factors that can predict its development, enabling better management of patients with fewer complications.

Aim

The aim of this study was to establish the bacterial profiles isolated from the bile sample and their role in selecting pre-emptive antibiotic therapy. In addition, we evaluated the pre-ERCP risk factors predicting the microbial growth and development of PEC.

Material and methods

Operational definition

Acute cholangitis [7]: Acute cholangitis was diagnosed when at least 3 of the following were present within 24–36 h of ERCP.

Clinical parameters: New-onset right upper abdominal pain.

Laboratory parameters: Rise in temperature > 38° C/100.4°F, rise in blood cells < 4 or > $10 \times /\mu$ l, rise in total bilirubin > 2 mg/dl.

Methodology

Study design: prospective cohort study.

Duration of study: January 2021 to December 2021 (1 year).

Study setting and population: Department of Hepato-gastroenterology, Sindh Institute of Urology and Transplantation.

Inclusion criteria

Patients of either gender aged > 18 years undergoing index ERCP procedure for various biliary or pancreatic disorders.

Exclusion criteria

- 1. Those having concurrent sepsis.
- 2. Failed bile aspiration.
- Patients who had altered biliary anatomy due to previous hepatobiliary surgery, e.g. hepaticojejunostomy, Whipple's procedure, etc.
- 4. Patients who had previous history of ERCP.

Data collection procedure

All the patients fulfilling the inclusion criteria were enrolled in this study. After taking informed consent, the patients' demographic and clinical information were obtained and were entered into a predesigned form including the patient's gender and age, endoscopic diagnoses, preoperative jaundice, drug therapy, common bile duct diameter, and papilla types.

The ERCP interventions were performed using a therapeutic duodenoscope (TJF-260V; Olympus Optical, Tokyo, Japan). All duodenoscopes were disinfected and decontaminated according to the guidelines. The selective cannulation was performed via the common bile duct by using a guidewire in all the patients. Once the guidewire cannulation was established, bile was aspirated by inserting a single-use, 5F, standard sphincterotome catheter into the bile duct before the injection of a contrast agent for the ERCP procedure. Approximately 2–8 ml of bile (average 4 ml) was collected in a 10 ml sterile syringe.

Statistical analysis

Data entry and analysis was done using Statistical Program for Social Sciences (SPSS) version 20 (IBM Corporation, Armonk, NY, USA). Continuous variables were expressed as mean and standard deviation, while categorical variables like gender, indication of procedure, presence of Gram-positive and Gram-negative organisms and multi-drug-resistant (MDR) organisms in bile culture along with duration of treatment were presented as frequencies and percentages. There were 2 outcome variables. One was the presence or absence of organisms in bile culture and the second one was the development of PEC. A *p*-value < 0.05 was considered significant.

Results

The total number of patients was 280. Baseline characteristics are shown in Table I. Out of them, 145 (51.8%) patients were males. Mean age was 47.14 ±12.8 years and 154 (55.4%) patients were more than 45 years old. The most common presenting complaint was abdominal pain, which was noticed in 212 (75.7%) patients, followed by jaundice in 204 (72.9%) patients and weight loss in 143 (51.2%) patients. The most common indication for ERCP was common bile duct (CBD) stricture, seen in 164 (58%) patients, followed by CBD stone in 60 (21%) patients and chronic pancreatitis in 26 (9%) patients (Figure 1). Bile Culture was positive in 195 (69.6%) patients and post-ERCP cholangitis developed in 187 (66.8%) patients. The most common organism in bile culture was Escherichia coli (E. coli) seen in 82 (42%) followed by Pseudomonas aeruginosa in 50 (25.6%) patients, multiple organisms in 25 (12.8%), *Klebsiella* in 24 (12.3%), *Acinetobacter* in 12 (6.1%), and Enterococcus in 2 (1%) patients (Table II).

Out of 195 positive bile cultures, MDR organisms were noted in 119 (61%) patients. The most common

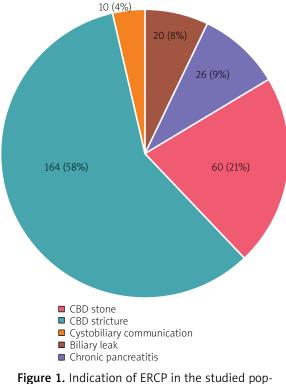

Study population		N (%) or mean ± SD
Age [years]		47.14 ±12.8
Age stratification	< 45 years	126 (45)
	≥ 45 years	154 (55)
Gender	Male	145 (51.8)
	Female	135 (48.2)
Indication for ERCP:		
CBD stricture		164 (58)
CBD stone		60 (21)
Chronic pancreatiti	is	26 (9)
Biliary leak		20 (8)
Cystobiliary comm	unication	10 (4)
Presenting complaints	:	
Jaundice		204 (72.9)
Abdominal pain		212 (75.7)
Weight loss		143 (51.2)
Bile culture:	Positive	195 (69.6)
	Negative	80 (31.4)
Pan sensitive organ	nisms	75 (39)
Multi drug-resistar	nt organisms	120 (61)
Post-ERCP	Yes	187 (66.8)
cholangitis:	No	93 (33.2)

Table I. Baseline characteristics and indications of ERCP in the studied population (n = 280)

ERCP - endoscopic retrograde cholangiopancreatography.

cause of MDR infection was *E. coli*, seen in 43 (36.1%) patients, followed by *Pseudomonas aeruginosa* in 25 (21%), *Klebsiella* in 20 (16.8%), multiple organisms in 20 (16.8%), and *Acinetobacter* in 11 (9%) patients (Figure 2). Most commonly, organisms were sensitive to carbapenems followed by piperacillin/tazobactam, tigecycline, cefepime, ceftriaxone, ampicillin, amoxicillin, and ciprofloxacin, respectively.

Among the 195 patients with positive bile culture, 179 developed post-ERCP cholangitis. On multivariate analysis, preoperative jaundice, history of abdominal pain, and weight loss on admission along with ERCP performed for CBD stricture and CBD stone were independent predictors of positive bile culture on ERCP (Tables III and IV), while age greater than 45 years, presence of preoperative jaundice, abdominal pain and weight loss, positive bile culture along with ERCP per-

ulation

formed for CBD stricture were independent risk factors for the development of post-ERCP cholangitis (Tables V and VI).

Discussion

The sterility and continuous bile flow in the biliary system is an unfavourable medium for bacterial or organism growth. Blockage of bile duct due to any aetiology can result in bile stasis, allowing the bacteria and other organisms that are transferred through duodenal papillae to reside, replicate, and colonize in the bile duct, resulting in severe consequences including cholangitis and biliary tract infection.⁸

Herein, we identified the microbial profile in the patients undergoing index ERCP. The bile culture positivity rate was 74.6%, i.e. 209 out of 279 patients had positive bile culture. Gram-negative bacteria was the leading cause of bacterial growth, accounting for 86% of the positive cultures. Among Gram-negative bacteria, *E.coli* was the leading cause, followed by *Pseudomonas aeruginosa*, multiple organsims, *Acinobacter, Klebseilla*, and *Enterococci* species. Our microbial profile was comparable to that seen in other studies, and similar to intestinal flora [8–11]. A study done by Hadi *et al.* [12] reported 36% positivity of bile culture in patients undergoing cholecystectomy with Gram-negative bacteria, accounting for 80% of the positive cultures, with a micro-

	N (%)
Pan-sensitive	39 (20)
MDR	43 (22.1)
Pan-sensitive	25 (12.8)
MDR	25 (12.8)
Pan-sensitive	4 (2)
MDR	20 (10.3)
Pan-sensitive	1 (0.5)
MDR	11 (5.6)
Pan-sensitive	2 (1)
MDR	0 (0)
Pan-sensitive	5 (2.6)
MDR	20 (10.3)
	MDR Pan-sensitive MDR Pan-sensitive MDR Pan-sensitive MDR Pan-sensitive MDR

Table II.	Microbial	profile	of bile	culture	(n = 195))
Table III	i i i i i i i i i i i i i i i i i i i	prome	or bric	culture	(1 1))	/

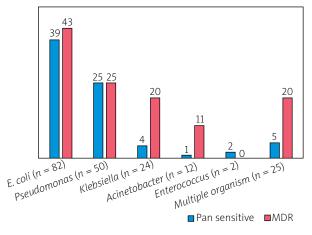


Figure 2. Microbial profile of the bile culture in the studied population

MDR – multidrug resistant.

Table III. Univariate analysis for risk factors for positive bile culture	nivariate analysis for risk factors for posit	ive bile culture
---	---	------------------

Variable		Positive culture	Negative culture	<i>P</i> -value		Variable		Positive culture	Negative culture	<i>P</i> -value
Age [years] mean :	± SD	47.8 ±12	45 ±15	0.17		Cystobiliary	Present	7	3	0.73
Age stratification	< 45 years	92	34	0.64		communication	Absent	202	68	-
	≥ 45 years	117	37	_		Presenting complaints:				
Gender	Male	107	38	0.80		Preoperative jaundice	Present	193	11	≤ 0.001
	Female	102	33	-			Absent	16	60	-
Indication for ERCI	² :					Abdominal	Present	183	29	≤ 0.001
CBD stricture	Present	150	14	≤ 0.001		pain	Absent	26	42	-
	Absent	59	57	-		Weight loss	Present	131	12	≤ 0.001
CBD stone	Present	38	22	0.02			Absent	78	59	-
	Absent	177	49	-		Laboratory investigations:				
Chronic	Present	20	6	0.78		Bilirubin on adm	nission	11.1 ±4.6	9.4 ±3.3	0.006
pancreatitis	Absent	189	65	-		ALT on admissio	n	41.5 ±29.2	38 ±40.3	0.424
Biliary leak	Present	19	1	0.03		AST on admissio	on	43 ±75.6	40 ±51.7	0.787
	Absent	189	71	-		TLC on admissic	on	10.8 ±3.3	10.8 ±2.7	0.766

CBD – common bile duct, ALT – alanine transaminase, AST – aspartate transaminase, TLC – total leucocyte count.

Table IV. Multivariate analysis for risk factors for positive bile culture

Variables	P-value	Odds	CI (9	5%)		Variables	P-value	Odds	CI (9	5%)
		ratio	Lower limit	Upper limit				ratio	Lower limit	Upper limit
Presence of jaundice on admission	≤ 0.001	0.18	0.006	0.054		Total bilirubin > 5 mg/dl on admission	0.141	0.925	0.833	1.026
Abdominal pain	0.002	0.063	0.063	0.535		CBD stricture	0.035	0.266	0.078	0.909
Weight loss	≤ 0.001	0.098	0.027	0.357		CBD stone	0.04	0.245	0.061	0.983

CBD – common bile duct.

5			
	r		
		•	

Variable	/ariable Post-ERCP <i>P</i> -value Variable cholangitis		Post-E cholan			<i>P</i> -valu			
		Present	Absent	-			Present	Absent	•
Age [years] mean :	± SD	47.8 ±12	45.3 ±14	0.171	Klebsiella	Present	18	2	0.05
Age stratification	< 45 years	77	49	0.034		Absent	2	2	
	≥ 45 years	110	44	-	Acinetobacter	Present	10	1	0.753
Gender	Male	96	49	0.348		Absent	1	0	
	Female	91	44	-	Pseudomonas	Present	22	3	0.269
Indication for ERCI	^D :					Absent	19	6	
CBD stricture	Present	126	38	≤ 0.001	Multiple	Present	19	1	0.610
	Absent	61	55	-	organisms	Absent	5	0	
CBD stone	Present	39	21	0.74	Difficult	Present	71	42	0.248
	Absent	148	72	-	cannulation	Absent	116	51	
Chronic	Present	16	10	0.511	Papillotomy	Present	132	60	0.303
pancreatitis	Absent	171	83	-		Absent	55	33	
Biliary leak	Present	14	6	0.99	Sphinc-	Present	39	28	0.078
	Absent	173	87	-	teroplasty	Absent	148	65	
Cystobiliary	Present	6	4	0.643	Laboratory investi	gations:			
communication	Absent	181	89	-	Bilirubin on adı	mission	11.1 ±4.6	9.4 ±3.3	0.00
Presenting compla	ints:				Bilirubin at 12 k	n post ERCP	10.1 ±4.1	8.4 ±3.2	0.002
Preoperative	Present	171	33	≤ 0.001	Bilirubin at 24 l		9.1 ±3.9	7.4 ±3.1	0.00
jaundice	Absent	16	60	-					
Abdominal	Present	166	46	≤ 0.001	Bilirubin at 48 I	n post ERCP	7.9 ±3.8	6.4 ±3.1	0.004
pain	Absent	21	47	-	ALT on admissi	on	29 ±2	40 ±4.7	0.424
Weight loss	Present	115	28	≤ 0.001	ALT at 12 h pos	ALT at 12 h post ERCP		36 ±39	0.298
	Absent	72	65	-	ALT at 24 h post ERCP		39 ±39	34 ±34	0.32
Post-ERCP	Present	112	18	≤ 0.001	ALT at 48 h post ERCP		37 ±30	30 ±24	0.124
fever	Absent	75	75	-					
Bile culture	Positive	178	17	≤ 0.001	AST on admission		43 ±75.6	40 ±51.7	0.787
	Negative	11	74	-	AST at 12 h pos	t ERCP	48 ±131	38 ±48	0.583
Organism on	Single	154	30	0.104	AST at 24 h pos	st ERCP	40 ±62	23 ±23	0.35
bile culture	Multiple	65	16		AST at 48 h pos	st ERCP	38 ±51	32 ±21	0.264
MDR	Present	106	14	0.115	TLC on admissi	on	10.8 ±3.2	10.9 ±2.7	0.766
	Absent	65	26	-	TLC at 12 h pos		11.5 ±3.4		0.406
Multi drug-resistar	nt organism:							11.9 ±2.4	
Escherichia	Present	32	7	0.814	TLC at 24 h pos	t ERCP	12.5 ±3.9	12.6 ±2.8	0.619
coli	Absent	36	37		TLC at 48 h pos	t ERCP	12.6 ±3.5	12.6 ±3.8	0.836

Table V. Univariate analysis for risk factors for post-ERCP cholangitis

CBD – common bile duct, ERCP – endoscopic retrograde cholangiopancreatography, MDR – multi drug resistant, ALT – alanine transaminase, AST – aspartate transaminase, TLC – total leucocyte count.

bial profile similar to that of our population. Similarly, Ruan *et al.* reported a bile culture positivity rate of 38% in patients undergoing ERCP in a Chinese population [11]. In comparison to other studies, the high positivity of bile culture in our population was due to prolonged stasis of bile prior to ERCP, because the most common indication for ERCP in our patients was CBD stricture followed by CBD stone. There are other studies reporting variable bile culture positivity rates in different populations, ranging from 16% to 85% [9, 13–18].

Variables	P-value	Odds ratio	CI (9	95%)
			Lower limit	Upper limit
Presence of jaundice on admission	0.014	2.991	0.991	9.03
Abdominal pain	0.031	0.352	0.137	0.907
Weight loss	0.049	0.409	0.168	0.996
Total bilirubin > 5 mg/dl on admission	0.305	1.08	0.929	1.266
CBD stricture	0.048	0.266	0.078	0.909
Age > 45 years	0.038	0.245	0.061	0.983
Klebsiella MDR	0.603	0.65	0.134	3.23
Bile culture	≤ 0.001	0.076	0.023	0.254

Table VI. Multivariate analysis for risk factors predictive of post-ERCP cholangitis

CBD - common bile duct, MDR - multi drug resistant.

In our study, bile was colonized by a single organism in most of the cases, as compared to the multiple organisms. This finding was comparable with the other studies – Ruan *et al.* and Kaya *et al.* revealed similar results [9, 11]. In contrast, a few other studies reported higher rates of multimicrobial growth in bile culture [14, 19]. This difference might be due to prolonged and overuse of antibiotics prophylactically prior to the ERCP in some areas or due to substandard culture medium.

E. coli was the most common strain colonizing the biliary tract, followed by Pseudomonas, Acinetobacter, Klebseilla, and Enterococci. E. coli is a common organism colonizing the gastrointestinal tract, while Klebseilla and Acinetobacter colonize both the gastrointestinal and respiratory tracts causing opportunistic infections [20, 21]. MDR infections were more common in our population due to easy availability of the broad spectrum antibiotics, which are prophylactically prescribed by local general practitioners. The recommended prophylactic treatment option for the prevention of PEC in patients undergoing ERCP includes cephalosporin or β -lactamase antibiotics [22]. Considering the prevalence of MDR infections in our population, most organisms were sensitive to carbapenems, followed by β -lactamase antibiotics and cephalosporins. The knowledge of this microbial profile and their antibiotic sensitivities will aid us in the usage of appropriate antibiotics for these organisms prophylactically and can also help in avoidance of antibiotic resistance.

On multivariate analysis, presence of jaundice, abdominal pain, and weight loss on admission together with ERCP performed for CBD stone and stricture were independent factors predictive of positive bile culture. This higher tendency of positive bile culture in patients with prolonged CBD stricture can be explained by the fact that biliary malignancies result in cachexia and malnutrition, leading to weight loss and decreased immunity and impaired mucosal response to pathogens resulting in bile colonization of opportunistic organisms and infection. Prolonged stasis and longer disease duration, as seen in patients with either benign or malignant CBD stricture or CBD stone, also result in biliary obstruction and proximal biliary tree dilatation causing bile stasis resulting in microbial retention and growth.

In our study, we also found that patients presenting with either jaundice, abdominal pain, weight loss with or without advanced age, undergoing ERCP for CBD stricture and positive bile culture at ERCP were at high risk of developing PEC. This can again be explained by the fact that all these findings are seen in prolonged stasis due to malignant strictures resulting in cachexia, malnutrition, and impaired immunity leading to impaired mucosal barrier causing microbial colonization and PEC. A study by Mahafzah and Daradkeh showed positive correlation between bile culture positivity and advanced age [23]. In our study, similar results were noted as the patients having age greater than 45 years were at increased risk of PEC. The knowledge of these factors causing PEC can help the clinician to start the broad-spectrum antibiotics prior to ERCP after a discussion with a multidisciplinary team involving, in particular, the infectious disease team.

Currently, prophylactic antibiotic treatment prior to ERCP is not routinely recommended. However, it is required when there is a need of repeated biliary interventions to achieve adequate biliary decompressions [22, 24].

There were certain limitations to our study. Firstly, it was a single-centred study, and secondly, the sample size was small. Hence, there is a need for a multicentric study with larger sample size to recommend prophylactic antibiotics to patients who are at high risk of developing PEC.

However, the strength of our study was that it was cross-sectional and pioneering study from this part of the world that revealed the microbial profile of biliary tract and risk factors predictive of PEC cholangitis. We followed strict protocols to perform all ERCP procedures by sterilizing all the instruments according to the international standards prior to the procedure to avoid cross-transmission between the patients.

Conclusions

The microbial profile and risk factors for positive bile culture and PEC were evaluated. Advanced age, pre-operative jaundice, abdominal pain, and weight loss along with prolonged biliary stasis were independent risk factors for these conditions. Therefore, there should be a proper preoperative management plan including a multidisciplinary approach for the commencement of prophylactic antibiotic therapy in these high-risk patients prior to ERCP.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Sung JY, Costerton JW, Shaffer EA. Defense system in the biliary tract against bacterial infection. Dig Dis Sci 1992; 37: 689-96.
- 2. Hochwald SN, Burke EC, Jarnagin WR, et al. Association of preoperative biliary stenting with increased postoperative infectious complications in proximal cholangiocarcinoma. Arch Surg 1999; 134: 261-6.
- Chen M, Wang L, Wang Y, et al. Risk factor analysis of post ERCP cholangitis: a single-center experience. Hepatobiliary Pancreat Dis Int 2018; 17: 55-8.
- 4. Kapral C, Mühlberger A, Wewalka F, et al. Quality assessment of endoscopic retrograde cholangiopancreatography: results of a running nationwide Austrian benchmarking project after 5 years of implementation. Eur J Gastroenterol Hepatol 2012; 24: 1447-54.
- Li ZS, Xu GM, Sun ZX, et al. Early complications of diagnostic and therapeutic ERCP and its treatment. Chin J Dig Endosc 2002; 19: 77-80.
- Kiriyama S, Kozaka K, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholangitis. J Hepatobiliary Pancreat Sci 2018; 25: 17-30.
- 7. Boey JH, Way LW. Acute cholangitis. Ann Surg 1980; 191: 264-70.
- 8. Ortiz-Brizuela E, Sifuentes-Osornio J, Manzur-Sandoval D, et al. Acute cholangitis after bilioenteric anastomosis for bile duct injuries. J Gastrointest Surg 2017; 21: 1613-9.
- Kaya M, Beştaş R, Bacalan F, et al. Microbial profile and antibiotic sensitivity pattern in bile cultures from endoscopic retrograde cholangiography patients. World J Gastroenterol 2012; 18: 3585-9.
- Voigtländer T, Leuchs E, Vonberg RP, et al. Microbiological analysis of bile and its impact in critically ill patients with secondary sclerosing cholangitis. J Infect 2015; 70: 483-90.

- 11. Ruan HQ, Liao GL, Peng P, et al. Microbial profiles and risk factors of preexisting biliary infection in patients with therapeutic endoscopy. Gastroenterol Res Pract 2019; 2019: 1527328.
- Hadi YB, Waqas M, Umer HM, et al. Bacterobilia in acute cholecystitis: bile cultures' isolates, antibiotic sensitivities and antibiotic usage. A study on a Pakistani population. J Pakistan Med Assoc 2016; 66 Suppl. 3: S50-2.
- 13. Rerknimitr R, Fogel EL, Kalayci C, et al. Microbiology of bile in patients with cholangitis or cholestasis with and without plastic biliary endoprosthesis. Gastrointest Endosc 2002; 56: 885-9.
- Negm AA, Schott A, Vonberg RP, et al. Routine bile collection for microbiological analysis during cholangiography and its impact on the management of cholangitis. Gastrointest Endosc 2010; 72: 284-91.
- 15. Sakata J, Shirai Y, Tsuchiya Y, et al. Preoperative cholangitis independently increases in-hospital mortality after combined major hepatic and bile duct resection for hilar cholangiocarcinoma. Langenbeck's Arch Surg 2009; 394: 1065-72.
- 16. Pohl J, Ring A, Stremmel W, Stiehl A. The role of dominant stenoses in bacterial infections of bile ducts in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 2006; 18: 69-74.
- 17. Millonig G, Buratti T, Graziadei IW, et al. Bactobilia after liver transplantation: frequency and antibiotic susceptibility. Liver Transpl 2006; 12: 747-53.
- Kiesslich R, Holfelder M, Will D, et al. Interventional ERCP in patients with cholestasis. Degree of biliary bacterial colonization and antibiotic resistance. Z Gastroenterol 2001; 39: 985-92.
- 19. Alves JR, Silva RC, Guerra SCP, et al. Microbiological analysis of bile in patients with benign and malignant biliopancreatic diseases and its consequences. Arq Gastroenterol 2016; 53: 156-62.
- 20. Yu H, Guo Z, Xing W, et al. Bile culture and susceptibility testing of malignant biliary obstruction via PTBD. Cardiovasc Interv Radiol 2012; 35: 1136-44.
- 21. Cuervo SI, Sánchez R, Gómez-Rincón JC, et al. Comportamiento de casos de Klebsiella pneumoniae productora de carbapenemasas en pacientes con cáncer de un hospital de tercer nivel de Bogotá, D.C. Biomédica 2014; 34 Suppl. 1: 170-80.
- 22. Sun Z, Zhu Y, Zhu B, et al. Controversy and progress for treatment of acute cholangitis after Tokyo Guidelines (TG13). Bio-Science Trends 2016; 10: 22-6.
- 23. Mahafzah AM, Daradkeh SS. Profile and predictors of bile infection in patients undergoing laparoscopic cholecystectomy. Saudi Med J 2009; 30: 1044-8.
- 24. Ishaq S, Lipp A. Antibiotic prophylaxis in gastrointestinal endoscopy. Gut 2010; 59: 1300.

Received: 5.03.2023 Accepted: 11.06.2023