Current issue
Archive
About the journal
Editorial board
Abstracting and indexing
Subscription
Contact
Instructions for authors
Publication charge
Ethical standards and procedures
Editorial System
Submit your Manuscript
|
4/2018
vol. 99 abstract:
RESEARCH PAPERS
Development of a functional fermented peanut-based cheese analog using probiotic bacteria
Poorva Sharma
,
Deepansh Sharma
,
Awzia Amin
BioTechnologia vol. 99(4) C pp. 435–441 C 2018
Online publish date: 2018/12/19
View
full text
Get citation
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
Cheese analogs are usually defined as products made using non-dairy proteins to produce a product similar to cheese. These products are increasingly popular due to their cost-effectiveness, health benefits, and simplicity of their manufacturing processes. Herein, attempts have been made to form a functional veg spread by using peanut and probiotic microorganism Lactobacillus rhamnosus NCDC18. The proportion of peanut seed and water for milk extraction was optimized based on the solid content of milk. Based on the water retention ability (WRA) and the solid and protein recovery of coagulated protein, the salt percentage for coagulation of peanut protein was optimized. Fermentation of coagulated protein by probiotic strain was done at 37°C for 24 h. A comparative analysis of physico-chemical properties such as moisture content, ash content, fat content, protein content, carbohydrate content, Vitamin C, antioxidant, titratable acidity, and pH was done before and after fermentation. For the extraction of milk with the desired amount of solid (5.5%), the optimum ratio of peanut and water was found to be 1 : 6. For the coagulation of peanut protein, the optimum coagulant (salt) was determined at 0.5%. The maximum solid recovery (51.7 ± 0.04), protein recovery (69.21 ± 0.01), and WRA (67.39 ± 0.03) were obtained with 0.5% magnesium chloride. No significant change was observed in the moisture, ash, fat, antioxidant, and vitamin C contents, while protein, carbohydrate, pH, and titratable acidity were found to change significantly before and after fermentation. Proteolysis of peanut protein by probiotic strain was found to be 61 μg/mg. As the refrigerated storage period increased (0 to 15 days), a significant (P # 0.05) decrease in cell viability and pH was observed.
keywords:
proteolysis, cell viability, peanut spread, probiotic, fermentation |