eISSN: 2449-8580
ISSN: 1734-3402
Family Medicine & Primary Care Review
Current issue Archive Manuscripts accepted About the journal Editorial board Reviewers Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2024
vol. 26
 
Share:
Share:
Original paper

Discrimination between unstable angina stages using multiple pathway parameters

Hasan Abbas Qazmooz
1
,
Hasan Najah Smesam
1
,
Maha Abdul Saheb Ridha
1
,
Hussein Kadhem Al-Hakeim
1

  1. Department of Chemistry, College of Science, University of Kufa, Iraq
Family Medicine & Primary Care Review 2024; 26(4): 490–499
Online publish date: 2024/12/29
Get citation
 
PlumX metrics:
 
1. Lu X, Li H, Wang S. Hydrogen sulfide protects against uremic accelerated atherosclerosis via nPKCδ/Akt signal path-way. Front Mol Biosci 2021; 7: 1–8.
2. McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract 2019; 8: 1–11, doi: 10.2147/IPRP.S133088.
3. Mousa RF, Smesam HN, Qazmooz HA, et al. A pathway phenotype linking metabolic, immune, oxidative, and opioid pathways with comorbid depression, atherosclerosis, and unstable angina. CNS Spectrums 2022; 27(6): 676–690.
4. Fan G, Liu M, Liu J, et al. Systematic review of the efficacy and safety of Shuxuening injection in the treatment of un-stable angina. Evid Based Complement Alternat Med 2022; 2022: 6650763, doi: 10.1155/2022/6650763.
5. Mendis S, Thygesen K, Kuulasmaa K, et al. World Health Organization definition of myocardial infarction: 2008–09 revision. Int J Epidemiol 2011; 40(1): 139–146, doi: 10.1093/ije/dyq165.
6. PouralijanAmiri M, Khoshkam M, Madadi R, et al. NMR-based plasma metabolic profiling in patients with unstable angina. Iran J Basic Med Sci 2020; 23(3): 311–320, doi: 10.22038/IJBMS.2020.39979.9475.
7. Dugani SB, Moorthy MV, Li C, et al. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women. JAMA Cardiol 2021; 6(4): 437–447.
8. Deckers JW. Classification of myocardial infarction and unstable angina: a re-assessment. Int J Cardiol 2013; 167(6): 2387–2390.
9. Qazmooz HA, Smesam HN, Mousa RF, et al. Trace element, immune and opioid biomarkers of unstable angina, in-creased atherogenicity and insulin resistance: Results of machine learning. J Trace Elem Med Biol 2021; 64: 126703, doi: 10.1016/j.jtemb.2020.126703.
10. El-Gamal F, Alshaikh R, Murshid A, et al. Risk factors of clinical types of Acute Coronary Syndrome. Middle East J Fam Med 2020; 18(1): 156–162, doi: 10.5742/MEWFM.2020.93740.
11. Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients 2018; 10(11): 1656.
12. Gil Á, Plaza-Diaz J, Mesa MD. Vitamin D: classic and novel actions. Ann Nutr Metab 2018; 72(2): 87–95, doi: 10.1159/000486536.
13. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319–329, doi: 10.1016/j.chembiol.2013.12.016.
14. Collaboration APCS. A comparison of lipid variables as predictors of cardiovascular disease in the Asia Pacific region. Ann Epidemiol 2005; 15(5): 405–413, doi: 10.1016/j.annepidem.2005.01.005.
15. Fernández-Macías JC, Ochoa-Martínez AC, Varela-Silva JA, et al. Atherogenic index of plasma: novel predictive bi-omarker for cardiovascular illnesses. Arch Med Res 2019; 50(5): 285–294, doi: 10.1016/j.arcmed.2019.08.009.
16. Abid H, Abid Z, Abid S. Atherogenic indices in clinical practice and biomedical research: a short review. Baghdad J Bio-chem Appl Biol Sci 2021; 2(2): 60–70.
17. Castelli WP, Abbott RD, McNamara PM. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983; 67(4): 730–734.
18. Igharo OG, Akinfenwa Y, Alphonsus R, et al. Lipid profile and atherogenic indices in Nigerians occupationally exposed to e-waste: a cardiovascular risk assessment study. Maedica (Bucur) 2020; 15(2): 196–205, doi: 10.26574/maedica.2020.15.2.196
19. Nair D, Carrigan TP, Curtin RJ, et al. Association of total cholesterol/high‐density lipoprotein cholesterol ratio with proximal coronary atherosclerosis detected by multislice computed tomography. Prev Cardiol 2009; 12(1): 19–26, doi: 10.1111/j.1751-7141.2008.00011.x.
20. Gómez-Álvarez E, Verdejo J, Ocampo S, et al. The CNIC-polypill improves atherogenic dyslipidemia markers in pa-tients at high risk or with cardiovascular disease: results from a real-world setting in Mexico. Int J Cardiol Heart Vasc 2020: 29: 100545, doi: 10.1016/j.ijcha.2020.100545.
21. Smesam HN, Qazmooz HA, Khayoon SQ, et al. Pathway phenotypes underpinning depression, anxiety, and chronic fatigue symptoms due to acute rheumatoid arthritis: a precision nomothetic psychiatry analysis. J Pers Med 2022; 12(3): 476, doi: 10.3390/jpm12030476.
22. Kovacic JC, Muller DW, Graham RM. Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular dis-ease. J Mol Cell Cardiol 2007; 42(1): 19–33, doi: 10.1016/j.yjmcc.2006.10.001.
23. Choi J. The Role of GM-CSF in Myocardial Infarction [Doctoral dissertation]. Boston (MA): Harvard Medical School; 2019.
24. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19(1): 31–44, doi: 10.1038/nrm.2017.89.
25. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 2018; 19(10): 654–672, doi: 10.1038/s41580-018-0044-8.
26. Grundy SM, Hansen B, Smith Jr SC, et al. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004; 109(4): 551–556.
27. Lebovitz H. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 2001: 109(Suppl. 2): S135–S148, doi: 10.1055/s-2001-18576.
28. Kosmas CE, Bousvarou MD, Kostara CE, et al. Insulin resistance and cardiovascular disease. J Int Med Res 2023; 51(3): 3000605231164548, doi: 10.1177/03000605231164548.
29. Gast KB, Tjeerdema N, Stijnen T, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLOS ONE 2012; 7(12): e52036.
30. Ding X, Wang X, Wu J, et al. Triglyceride – glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol 2021; 20(1): 76, doi: 10.1186/s12933-021-01268-9.
31. Okano T, Sato K, Shirai R, et al. β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques. Int J Endocrinol 2020; 2020: 4139093, doi: 10.1155/2020/4139093.
32. Campeau L. Letter: Grading of angina pectoris. Circulation 1976; 54(3): 522–523.
33. Anderson J, Adams C, Antman E, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127(23): e663–e828.
34. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Pressure 2013; 22(4): 193–278.
35. WHO. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consul-tation. 2006. Available from URL: https://iris.who.int/handle/10665/43588.
36. WHO. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consul-tation. No. WHO/NMH/CHP/CPM/11.1. World Health Organization, 2011. Available from URL: https://iris.who.int/bitstream/handle/10665/70523/WHO_NMH_CHP_CPM_11.1_eng.pdf.
37. Caruso G, Fresta CG, Grasso M, et al. Inflammation as the Common Biological Link Between Depression and Cardio-vascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27(11): 1782–1800, doi: 10.2174/0929867326666190712091515.
38. Mizia-Stec K, Zahorska-Markiewicz B, Mandecki T, et al. The selected pro-and anti-inflammatory cytokines in the patients with coronary heart disease: preliminary communication. Pol Arch Med Wewn 1999; 102(2): 677–684.
39. Anguera I, Miranda-Guardiola F, Bosch X, et al. Elevation of serum levels of the anti-inflammatory cytokine interleu-kin-10 and decreased risk of coronary events in patients with unstable angina. Am Heart J 2002; 144(5): 811–817.
40. Marchio P, Guerra-Ojeda S, Vila JM, et al. Targeting early atherosclerosis: a focus on oxidative stress and inflamma-tion. Oxid Med Cell Longev 2019; 2019: 8563845, doi: 10.1155/2019/8563845.
41. Li J-J, Wang H-R, Huang C-X, et al. Enhanced inflammatory response of blood monocytes to C-reactive protein in patients with unstable angina. Clin Chim Acta 2005; 352(1–2): 127–133, doi: 10.1016/j.cccn.2004.08.019.
42. Luo Y, Jiang D, Wen D, et al. Changes in serum interleukin-6 and high-sensitivity C-reactive protein levels in patients with acute coronary syndrome and their responses to simvastatin. Heart Vessels 2004; 19(6): 257–262, doi: 10.1007/s00380-004-0776-6.
43. Chen SL, Liu Y, Lin L, et al. Interleukin‐6, but not C‐reactive protein, predicts the occurrence of cardiovascular events after drug‐eluting stent for unstable angina. J Interv Cardiol 2014; 27(2): 142–154, doi: 10.1111/joic.12103.
44. Garg R, Aggarwal S, Kumar R, et al. Association of atherosclerosis with dyslipidemia and co-morbid conditions: A descriptive study. J Nat Sci Biol Med 2015; 6(1): 163–168, doi: 10.4103/0976-9668.149117.
45. Sniderman AD, Williams K, Contois JH, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes 2011; 4(3): 337–345, doi: 10.1161/CIRCOUTCOMES.110.959247.
46. Wengrofsky P, Lee J, Makaryus AN. Dyslipidemia and its role in the pathogenesis of atherosclerotic cardiovascular disease: implications for evaluation and targets for treatment of dyslipidemia based on recent guidelines. In: McFar-lane SI. Dyslipidemia. IntechOpen; 2019. Available from URL: https://www.intechopen.com/chapters/66725.
47. Cai G, Shi G, Xue S, et al. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine (Baltimore) 2017; 96(37): e8058, doi: 10.1097/MD.0000000000008058.
48. Liu Y, Feng X, Yang J, et al. The relation between atherogenic index of plasma and cardiovascular outcomes in predia-betic individuals with unstable angina pectoris. BMC Endocr Dis 2023; 23(1): 187, doi: 10.1186/s12902-023-01443-x.
49. Edwards M, Loprinzi P. The dose-response association between reported moderate to vigorous intensity physical activity and atherogenic index of plasma: NHANES, 1999–2006. J Phys Act Health 2019; 16(5): 368–370, doi: 10.1123/jpah.2016-0389.
50. Mazidi M, Katsiki N, Mikhailidis DP, et al. Association of ideal cardiovascular health metrics with serum uric acid, in-flammation and atherogenic index of plasma: A population-based survey. Atherosclerosis 2019: 284: 44–49, doi: 10.1016/j.atherosclerosis.2018.09.016.
51. Kawakami A, Aikawa M, Alcaide P, et al. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 2006; 114(7): 681–687.
52. Huang Y, Hu Y, Mai W, et al. Plasma oxidized low-density lipoprotein is an independent risk factor in young patients with coronary artery disease. Disease Markers 2011; 31(5): 295–301.
53. Jia S-J, Niu P-P, Cong J-Z, et al. TLR4 signaling: a potential therapeutic target in ischemic coronary artery disease. Int Immunopharmacol 2014; 23(1): 54–59, doi: 10.1016/j.intimp.2014.08.011.
54. Wyss CA, Neidhart M, Altwegg L, et al. Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. Eur Heart J 2010; 31(12): 1457–1469.
55. Justo-Junior A, Villarejos L, Lima X, et al. Monocytes of patients with unstable angina express high levels of chemo-kine and pattern-recognition receptors. Cytokine 2019; 113: 61–67.
56. Gurses KM, Kocyigit D, Yalcin MU, et al. Enhanced Platelet Toll-like Receptor 2 and 4 Expression in Acute Coronary Syndrome and Stable Angina Pectoris. Am J Cardiol 2015; 116(11): 1666–1671.
57. Cognasse F, Hamzeh H, Chavarin P, et al. Evidence of Toll‐like receptor molecules on human platelets. Immunol Cell Biol 2005; 83(2): 196–198, doi: 10.1111/j.1440-1711.2005.01314.x.
58. Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182(12): 7997–8004, doi: 10.4049/jimmunol.0802884.
59. Netea MG, Nold-Petry CA, Nold MF, et al. Differential requirement for the activation of the inflammasome for pro-cessing and release of IL-1β in monocytes and macrophages. Blood 2009; 113(10): 2324–2335.
60. Pasini AF, Anselmi M, Garbin U, et al. Enhanced levels of oxidized low-density lipoprotein prime monocytes to cyto-kine overproduction via upregulation of CD14 and toll-like receptor 4 in unstable angina. Arterioscler Thromb Vasc Biol 2007; 27(9): 1991–1997, doi: 10.1161/ATVBAHA.107.142695.
61. Chávez-Sánchez L, Madrid-Miller A, Chávez-Rueda K, et al. Activation of TLR2 and TLR4 by minimally modified low-density lipoprotein in human macrophages and monocytes triggers the inflammatory response. Hum Immunol 2010; 71(8): 737–744, doi: 10.1016/j.humimm.2010.05.005.
62. Sato T, Iwabuchi K, Nagaoka I, et al. Induction of human neutrophil chemotaxis by Candida albicans – derived beta-1,6-long glycoside side-chain-branched beta-glucan. J Leukoc Biol 2006; 80(1): 204–211, doi: 10.1189/jlb.0106069.
63. Iwabuchi K, Prinetti A, Sonnino S, et al. Involvement of very long fatty acid-containing lactosylceramide in lacto-sylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2008; 25(4): 357–374, doi: 10.1007/s10719-007-9084-6.
64. Yeh LH, Kinsey AM, Chatterjee S, et al. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J Vasc Res 2001; 38(6): 551–559, doi: 10.1159/000051091.
65. Pannu R, Won JS, Khan M, et al. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J Neurosci 2004; 24(26): 5942–5954, doi: 10.1523/JNEUROSCI.1271-04.2004.
66. Shui G, Lam SM, Stebbins J, et al. Polar lipid derangements in type 2 diabetes mellitus: potential pathological rele-vance of fatty acyl heterogeneity in sphingolipids. Metabolomics 2013; 9(4): 786–799, doi: 10.1007/s11306-013-0494-0.
67. Al-Hakeim HK, Hadi HH, Jawad GA, et al. Intersections between copper, β-arrestin-1, calcium, FBXW7, CD17, insulin resistance and atherogenicity mediate depression and anxiety due to type 2 diabetes mellitus: A nomothetic network approach. J Pers Med 2022; 12(1): 23, doi: 10.3390/jpm12010023.
68. Nakamura H, Moriyama Y, Watanabe K, et al. Lactosylceramide-Induced Phosphorylation Signaling to Group IVA Phospholipase A2 via Reactive Oxygen Species in Tumor Necrosis Factor-alpha-Treated Cells. J Cell Biochem 2017; 118(12): 4370–4382, doi: 10.1002/jcb.26091.
69. Alshehry ZH, Mundra PA, Barlow CK, et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Pre-diction of Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation 2016; 134(21): 1637–1650.
70. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the Amer-ican Heart Association. Circulation 2011; 123(20): 2292–2333.
71. Jacob RF, Walter MF, Self-Medlin Y, et al. Atorvastatin active metabolite inhibits oxidative modification of small dense low-density lipoprotein. J Cardiovasc Pharmacol 2013; 62(2): 160–166, doi: 10.1097/FJC.0b013e318294998d.
72. Qazmooz HA, Smeism HN, Mousa RF, et al. Trace element, immune and opioid biomarkers of unstable angina, in-creased atherogenicity and insulin resistance: results of machine learning. J Trace Elem Med Biol 2021; 64: 126703, doi: 10.1016/j.jtemb.2020.126703.
73. Sagarad SV, Sukhani N, Machanur B, et al. Effect of Vitamin D on Anginal Episodes in Vitamin D Deficient Patients with Chronic Stable Angina on Medical Management. J Clin Diagn Res 2016; 10(8): OC24–OC26.
74. Ramadan R, Vaccarino V, Esteves F, et al. Association of vitamin D status with mental stress induced myocardial is-chemia in patients with coronary artery disease. Psychosom Med 2014; 76(7): 569–575, doi: 10.1097/PSY.0000000000000088.
75. Huang J, Wang Z, Hu Z, et al. Association between blood vitamin D and myocardial infarction: A meta-analysis includ-ing observational studies. Clin Chim Acta 2017; 471: 270–275, doi: 10.1016/j.cca.2017.06.018.
76. Casseb GA, Ambrósio G, Rodrigues ALS, et al. Levels of 25-hydroxyvitamin D3, biochemical parameters and symp-toms of depression and anxiety in healthy individuals. Metabol Brain Dis 2019; 34(2): 527–535.
77. Cleland SJ, Petrie JR, Ueda S, et al. Insulin-mediated vasodilation and glucose uptake are functionally linked in hu-mans. Hypertension 1999; 33(1): 554–558.
78. Al-Karkhi I, Ibrahim AE, Yaseen AK. Levels of insulin, IL-6 and CRP in patients with unstable angina. Adv Clin Exp Med 2013; 22(5): 655–658.
79. Ogata A, Morishima A, Hirano T, et al. Improvement of HbA1c during treatment with humanised anti-interleukin 6 receptor antibody, tocilizumab. Ann Rheum Dis 2011; 70(6): 1164–1165, doi: 10.1136/ard.2010.132845.
80. Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obe-sity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280(5): E745–E751, doi: 10.1152/ajpendo.2001.280.5.E745.
81. Wilbert-Lampen U, Trapp A, Barth S, et al. Effects of beta-endorphin on endothelial/monocytic endothelin-1 and nitric oxide release mediated by mu1-opioid receptors: a potential link between stress and endothelial dysfunction? Endothelium 2007; 14(2): 65–71, doi: 10.1080/10623320701346585.
82. Tomai F, Crea F, Gaspardone A, et al. Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 1999; 33(7): 1863–1869, doi: 10.1016/s0735-1097(99)00095-9.
83. He S, Jin S, Yang W, et al. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br J Anaesth 2018; 121(1): 26–37, doi: 10.1016/j.bja.2017.11.110.
84. Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr Rev 2019; 40(6): 1447–1467, doi: 10.1210/er.2018-00141.
85. Okano T, Sato K, Shirai R, et al. β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques. Int J Endocrinol 2020; 2020: 4139093, doi: 10.1155/2020/4139093.
86. Fu L-W, Longhurst JC. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 305(1): H76–H85, doi: 10.1152/ajpheart.00091.2013.
87. Al-Fadhel SZ, Al-Hakeim HK, Al-Dujaili AH, et al. IL-10 is associated with increased mu-opioid receptor levels in major depressive disorder. Eur Psychiatry 2019; 57: 46–51, doi: 10.1016/j.eurpsy.2018.10.001.
88. Al-Hakeim HK, Zeki Al-Fadhel S, Al-Dujaili AH, et al. In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr 2020; 32(2): 99–108, doi: 10.1017/neu.2019.47.
89. Moustafa SR, Al-Rawi KF, Stoyanov D, et al. The Endogenous Opioid System in Schizophrenia and Treatment Re-sistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleu-kin-6. Diagnostics (Basel) 2020; 10(9): 633, doi: 10.3390/diagnostics10090633.
90. Nunes JPL. Statins and the cholesterol mortality paradox. Scott Med J 2017; 62(1): 19–23, doi: 10.1177/0036933016681913.
91. Budzyński J, Tojek K, Wustrau B, et al. The “cholesterol paradox” among inpatients – retrospective analysis of medi-cal documentation. Arch Med Sci Atheroscler Dis 2018; 27(3): e46–e57, doi: 10.5114/amsad.2018.74736.
92. Beckman JA, Paneni F, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 2013; 34(31): 2444–2452, doi: 10.1093/eurheartj/eht142.
93. Chen L, Sun M, Liu H, et al. Association of plasma apolipoprotein CIII, high sensitivity C-reactive protein and tumor necrosis factor-α contributes to the clinical features of coronary heart disease in Li and Han ethnic groups in China. Lipids Health Dis 2018; 17(1): 176, doi: 10.1186/s12944-018-0830-5.
94. Lee JH, O’Keefe JH, Bell D, et al. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol 2008; 52(24): 1949–1956, doi: 10.1016/j.jacc.2008.08.050.
95. Vacek JL, Vanga SR, Good M, et al. Vitamin D deficiency and supplementation and relation to cardiovascular health. Am J Cardiol 2012; 109(3): 359–363, doi: 10.1016/j.amjcard.2011.09.020.
96. Motiwala SR, Wang TJ. Vitamin D and cardiovascular risk. Curr Hypertens Rep 2012; 14(3): 209–218, doi: 10.1007/s11906-012-0262-y.
97. Siadat ZD, Kiani K, Sadeghi M, et al. Association of vitamin D deficiency and coronary artery disease with cardiovascu-lar risk factors. J Res Med Sci 2012; 17(11): 1052–1055.
Copyright: © 2024 Family Medicine & Primary Care Review. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.