Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Effects of breathing a hyperoxic gas mixture on perceptual, biochemical and performance recovery following simulated soccer match play

Wael Daab
1
,
Haithem Rebai
2
,
Abd-Elbasset Abaïdia
3
,
Mohamed Amine Bouzid
4

  1. College of Sport Science, University of Kalba, Sharjah, United Arab Emirates
  2. Research Laboratory Sports Performance Optimization (LR09SEP01), National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
  3. UR UPJV 3300 APERE Adaptation Physiologiques à l’Exercice et Réadaptation à l’Effort, Université de Picardie Jules Verne, Amiens, France
  4. Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
Biol Sport.2025;42(3):51–60
Online publish date: 2025/01/16
Article file
- 5_04414_Article.pdf  [0.77 MB]
Get citation
 
PlumX metrics:
 
1. Tucker R, Kayser B, Rae E, Raunch L, Bosch A, Noakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007 Dec; 101(6):771–81. doi: 10.1007 /s00421-007-0458-z.
2. Sperlich B, Zinner C, Krueger M, Wegrzyk J, Achtzehn S, Holmberg HC. Effects of hyperoxia during recovery from 5 × 30-s bouts of maximal-intensity exercise. J Sports Sci. 2012 May; 30(9):851–858. doi: 10.1080 /02640414.2012 .671531.
3. Kay B, Stannard SR, Morton RH, North N. Hyperoxia during recovery improves peak power during repeated wingate cycle performance. Braz J Biomotricity. 2008; 2(2):92–100.
4. Sperlich B, Zinner C, Hauser A, Holmberg HC, Wegrzyk J. The impact of hyperoxia on human performance and recovery. Sports Med. 2017; 47(3):429–438.
5. Mallette MM, Stewart DG, Cheung SS. The effects of hyperoxia on sea-level exercise performance, training, and recovery: a meta-analysis. Sports Med. 2018; 48(1):153–175.
6. Nandi K, Smith A, Crawford A, MacRae K, Garrod R, Seed W, et al. Oxygen supplementation before or after submaximal exercise in patients with chronic obstructive pulmonary disease. Thorax. 2003 Aug; 58(8):670–673.
7. Stevenson N, Calverley P. Effect of oxygen on recovery from maximal exercise in patients with chronic obstructive pulmonary disease. Thorax. 2004 Aug; 59(8):668–672.
8. Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of Alzheimer’s disease in patients with mild cognitive impairment: a pilot study. Int J Mol Sci. 2019; 20(21).
9. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006 Jul; 24(7):665–674.
10. Mohr M, Krustrup P, Nybo L, Nielsen JJ, Bangsbo J. Muscle temperature and sprint performance during soccer matches: beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports. 2004 Jun; 14(3):156–162.
11. Daab W, Bouzid MA, Lajri M, Bouchiba M, Saafi MA, Rebai H. Chronic beetroot juice supplementation accelerates recovery kinetics following simulated match play in soccer players. J Am Coll Nutr. 2021; 40(1):61–69.
12. Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric muscle contractions: risks and benefits. Front Physiol. 2019; 10:442. doi: 10.3389/fphys.2019.00442.
13. Mancinelli R, Pietrangelo T, La Rovere R, Toniolo L, Fanò G, Reggiani C, et al. Cellular and molecular responses of human skeletal muscle exposed to a hypoxic environment. J Biol Regul Homeost Agents. 2011; 25(4):635.
14. Stellingwerff T, Glazier L, Watt MJ, LeBlanc PJ, Heigenhauser GJ, Spriet LL. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. J Appl Physiol (1985). 2005 Jan; 98(1):250–256.
15. Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J. 2016 Dec; 30(12):3929–3941.
16. Sperlich B, Zinner C, Krueger M, Wegrzyk J, Mester J, Holmberg HC. Ergogenic effect of hyperoxic recovery in elite swimmers performing high-intensity intervals. Scand J Med Sci Sports. 2011 Dec; 21(6):e421-e429. doi: 10.11 11/j.1600-0838.2011.01349.x.
17. Yokoi Y, Yanagihashi R, Morishita K, Goto N, Fujiwara T, Abe K. Recovery effects of repeated exposures to normobaric hyperoxia on local muscle fatigue. J Strength Cond Res. 2014 Aug; 28(8):2173–2179.
18. Mihailovic T, Bouzigon R, Bouillod A, Grevillot J, Ravier G. Post-exercise hyperbaric oxygenation improves recovery for subsequent performance. Res Q Exerc Sport. 2023 Jun; 94(2):427–434. doi: 10 .1080/02701367.2021.2002797.
19. Beck TW. The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res. 2013 Aug; 27(8):2323–2337.
20. Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988 Dec; 22(4):141–144.
21. Nicholas CW, Nuttall FE, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000 Feb; 18(2):97–104. doi: 10.1080/0264041 00365162.
22. Rabbani A, Clemente FM, Kargarfard M, Chamari K. Match fatigue time-course assessment over four days: usefulness of the Hooper index and heart rate variability in professional soccer players. Front Physiol. 2019; 10:411. doi: 10.3389/fphys.2019.00411.
23. Moalla W, Fessi MS, Farhat F, Nouira S, Wong DP, Dupont G. Relationship between daily training load and psychometric status of professional soccer players. Res Sports Med. 2016; 24(4):387–394.
24. Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011 Feb; 25(2):556–560. doi: 10.1519/JSC .0b013e3181ccb18d.
25. Curb JD, Ceria-Ulep CD, Rodriguez BL, Grove J, Guralnik J, Willcox BJ, et al. Performance-based measures of physical function for high-function populations. J Am Geriatr Soc. 2006 May; 54(5):737–742. doi: 10.1111/j.1532 -5415.2006.00700.x.
26. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Routledge; 2013.
27. Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999 Jan; 27(1):43–59. doi: 10.2165/00007256-199927010 -00004.
28. Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part II—recovery strategies. Sports Med. 2013; 43(1):9–22.
29. Harrison B, Robinson D, Davison B, Foley B, Seda E, Byrnes W. Treatment of exercise-induced muscle injury via hyperbaric oxygen therapy. Med Sci Sports Exerc. 1999 May; 31(5 Suppl): S74.
30. Abaïdia AE, Cosyns S, Dupont G. Muscle oxygenation induced by cycling exercise does not accelerate recovery kinetics following exercise-induced muscle damage in humans: a randomized cross-over study. Respir Physiol Neurobiol. 2019 Mar; 266:82–88.
31. Verges S, Bachasson D, Wuyam B. Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir Res. 2010 Jan; 11:1–9.
32. Daab W, Bouzid MA, Lajri M, Bouchiba M, Rebai H. Brief cycles of lower-limb occlusion accelerate recovery kinetics in soccer players. Physician Sportsmed. 2021 Apr; 49(2):143–150.
33. Cook CJ, Beaven CM. Individual perception of recovery is related to subsequent sprint performance. Br J Sports Med. 2013 Jun; 47(11):705–709.
34. Amann M, Calbet JA. Convective oxygen transport and fatigue. J Appl Physiol (1985). 2008 Mar; 104(3):861–870.
35. Dean JB, Mulkey DK, Henderson RA 3rd, Potter SJ, Putnam RW. Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. J Appl Physiol (1985). 2004 Feb; 96(2):784–791. doi: 10.1152/japplphysiol.00892.2003.
36. Wilber RL, Holm PL, Morris DM, Dallam GM, Subudhi AW, Murray DM, et al. Effect of FIO2 on oxidative stress during interval training at moderate altitude. Med Sci Sports Exerc. 2004 Nov; 36(11):1888–1894. doi: 10.1249/01 .mss.0000145442.25016.dd.
37. White J, Dawson B, Landers G, Croft K, Peeling P. Effect of supplemental oxygen on post-exercise inflammatory response and oxidative stress. Eur J Appl Physiol. 2013 Apr; 113(4):1059–1067. doi: 10.1007 /s00421-012-2521-7.
38. Huang X, Wang R, Zhang Z, Wang G, Gao B. Effects of pre-, post-, and intra-exercise hyperbaric oxygen therapy on performance and recovery: a systematic review and meta-analysis. Front Physiol. 2021; 12:791872. doi: 10.3389/fphys.2021.791872.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.