1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249.
2.
Slootweg PJ, Eveson JW. Tumors of the oral cavity and oropharynx: introduction. In: Pathology and Genetics of Head and Neck Tumours. Barnes L, Eveson JW, Reichart P, Sidransky D (eds.). Lyon: IARC Press; 2005.
3.
Bagan JV, Scully C. Recent advances in oral oncology 2008; squamous cell carcinoma aetiopathogenesis and experimental studies. Oral Oncol 2009; 45: e45-e48. DOI: 10.1016/j.oraloncology.2008.12.012.
4.
Grizzle WE, Srivastava S, Manne U. The biology of incipient, pre-invasive or intraepithelial neoplasia. Cancer Biomark 2010; 9: 21-39.
5.
Tsantoulis PK, Kastrinakis NG, Tourvas AD, et al. Advances in the biology of oral cancer. Oral Oncol 2007; 43: 523-534.
6.
Chang SS, Califano J. Current status of biomarkers in head and neck cancer. J Surg Oncol 2008; 97: 640-643.
7.
Kobayashi T, Maruyama S, Abe T, et al. Keratin 10-positive orthokeratotic dysplasia: a new leucoplakia-type precancerous entity of the oral mucosa. Histopathology 2012; 61: 910-920.
8.
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-111.
9.
Richard V, Pillai MR. The stem cell code in oral epithelial tumorigenesis: ‘the cancer stem cell shift hypothesis’. Biochim Biophys Acta 2010; 1806: 146-162.
10.
Zhang Z, Filho MS, Nor JE. The biology of head and neck cancer stem cells. Oral Oncol 2012; 48: 1-9.
11.
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-737.
12.
Gonzalez-Moles MA, Scully C, Ruiz-Avila I, Plaza-Campillo JJ. The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol 2013; 49: 738-746.
13.
Ishizawa K, Rasheed ZA, Karisch R, et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010; 7: 279-282.
14.
Gale N, Poljak M, Zidar N. Update from the 4th edition of the World Health Organization classification of head and neck tumours: what is new in the 2017 WHO blue book for tumours of the hypopharynx, larynx, trachea and parapharyngeal space. Head Neck Pathol 2017; 11: 23-32.
15.
Kujan O, Oliver RJ, Khattab A, et al. Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol 2006; 42: 987-993.
16.
Watanabe K, Petro BJ, Shlimon AE, Unterman TG. Effect of periodontitis on insulin resistance and the onset of type 2 diabetes mellitus in Zucker diabetic fatty rats. J Periodontol 2008; 79: 1208-1216.
17.
Chujan S, Kitkumthorn N, Satayavivad J. Identification of potential molecular mechanisms and prognostic markers for oral squamous cell carcinoma: a bioinformatics analysis. J Int Soc Prev Community Dent 2023; 13: 237-246.
18.
Ma J, Wu R, Chen Z, et al. CD44 is a prognostic biomarker correlated with immune infiltrates and metastasis in clear cell renal cell carcinoma. Anticancer Res 2023; 43: 3493-3506.
19.
Gao J, Li X, Li D, et al. Quantitative immunohistochemistry (IHC) analysis of biomarker combinations for human esophageal squamous cell carcinoma. Ann Transl Med 2021; 9: 1086. DOI: 10.21037/atm-21-2950.
20.
Barzegar Behrooz A, Syahir A, Ahmad S. CD133: beyond a cancer stem cell biomarker. J Drug Target 2019; 27: 257-269.
21.
Ong ML, Schofield JB. Assessment of lymph node involvement in colorectal cancer. World J Gastrointest Surg 2016; 8: 179-192.
22.
Morais EF, Pinheiro JC, Lira JA, et al. Prognostic value of the immunohistochemical detection of epithelial-mesenchymal transition biomarkers in oral epithelial dysplasia: a systematic review. Med Oral Patol Oral Cir Bucal 2020; 25: e205-e216. DOI: 10.4317/medoral.23305.
23.
Romano M, Francesco FDE, Zarantonello L, et al. From inflammation to cancer in inflammatory bowel disease: molecular perspectives. Anticancer Res 2016; 36: 1447-1460.
24.
Chen SH, Hsiao SY, Chang KY, Chang JY. New insights into oral squamous cell carcinoma: from clinical aspects to molecular tumorigenesis. Int J Mol Sci 2021; 22: 2252. DOI: 10.3390/ijms22052252.
25.
Loercher A, Lee TL, Ricker JL, et al. Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res 2004; 64: 6511-6523.
26.
Wu T, Hong Y, Jia L, et al. Modulation of IL-1beta reprogrammes the tumor microenvironment to interrupt oral carcinogenesis. Sci Rep 2016; 6: 20208. DOI: 10.1038/srep20208.
27.
Zhang Z, Xu J, Liu B, et al. Ponicidin inhibits pro-inflammatory cytokine TNF-alpha-induced epithelial-mesenchymal transition and metastasis of colorectal cancer cells via suppressing the AKT/GSK-3beta/Snail pathway. Inflammopharmacology 2019; 27: 627-638.
28.
Glasgow SC, Bleier JIS, Burgart LJ, et al. Meta-analysis of histopathological features of primary colorectal cancers that predict lymph node metastases. J Gastrointestinal Surg 2012; 16: 1019-1028.
29.
Wang C, Huang H, Huang Z, et al. Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. J Oral Pathol Med 2011; 40: 545-551.
30.
Takkunen M, Grenman R, Hukkanen M, et al. Snail-dependent and -independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 2006; 54: 1263-1275.
31.
Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1994; 1198: 11-26.
32.
Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155-166.
33.
Prall F. Tumour budding in colorectal carcinoma. Histopathology 2007; 50: 151-162.
34.
Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153: 333-339.
35.
Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 2002; 161: 1881-1891.
36.
Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer 2007; 96: 1-5.
37.
Kumamoto H, Ohki K. Detection of CD133, Bmi-1, and ABCG2 in ameloblastic tumors. J Oral Pathol Med 2010; 39: 87-93.
38.
Joshua B, Kaplan MJ, Doweck I, et al. Frequency of cells expressing CD44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck 2012; 34: 42-49.
39.
Ravindran G, Devaraj H. Aberrant expression of CD133 and musashi-1 in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head Neck 2012; 34: 1129-1135.
40.
Oliveira LR, Castilho-Fernandes A, Oliveira-Costa JP, et al. CD44+/CD133+ immunophenotype and matrix metalloproteinase-9: influence on prognosis in early-stage oral squamous cell carcinoma. Head Neck 2014; 36: 1718-1726.
41.
Payne SH. The utility of protein and mRNA correlation. Trends Biochem Sci 2015; 40: 1-3.
42.
Awasthi S, Ahmad S, Gupta R, et al. Differential expression of cancer stem cell markers and pro-inflammatory cytokine IL-1beta in the oral squamous cell carcinoma and oral submucosal fibrosis. Int J Health Sci (Qassim) 2023; 17: 28-38.
43.
Margaritescu C, Pirici D, Simionescu C, Stepan A. The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol 2011; 52 (3 Suppl): 985-993.
44.
Zhu LF, Hu Y, Yang CC, et al. Snail overexpression induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. Lab Invest 2012; 92: 744-752.