1. Aktas G. A comprehensive review on rational and effective treatment strategies against an invisible enemy; SARS Cov-2 infection. Experimental Biomedical Research 2020; 3: 293–311.
2.
Bilgin S, Kurtkulagi O, Kahveci GB, et al. Millennium pandemic: a review of coronavirus disease (COVID-19). Experimental Biomedical Research 2020; 3: 117–125.
3.
De Filippo O, D’Ascenzo F, Angelini F, et al. Reduced rate of hospital admissions for ACS during COVID-19 outbreak in Northern Italy. N Engl J Med 2020; 383(1): 88–89.
4.
Chang HJ, Huang N, Lee CH, et al. The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS. Am J Public Health 2004; 94(4): 562–564.
5.
Chu D, Chen RC, Ku CY, et al. The impact of SARS on hospital performance. BMC Health Serv Res 2008; 8: 228, doi: 10.1186/1472-6963-8-228.
6.
Garcia S, Albaghdadi MS, Meraj PM, et al. Reduction in ST-Segment Elevation Cardiac Catheterization Laboratory Activations in the United States During COVID-19 Pandemic. J Am Coll Cardiol 2020; 75(22): 2871–2872, doi: 10.1016/j.jacc.2020.04.011.
7.
De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J 2020; 41: 2083–2088, doi: 10.1093/eurheartj/ehaa409.
8.
Diegoli H, Magalhães PSC, Martins SCO, et al. Decrease in Hospital Admissions for Transient Ischemic Attack, Mild, and Moderate Stroke During the COVID-19 Era. Stroke 2020; 51: 2315–2321, doi: 10.1161/strokeaha.120.030481.
9.
El-Hamamsy I, Brinster DR, DeRose JJ, et al. The COVID-19 Pandemic and Acute Aortic Dissections in New York: A Matter of Public Health. J Am Coll Cardiol 2020; 76: 227–229, doi: 10.1016/j.jacc.2020.05.022.
10.
Bindman AB, Keane D, Lurie N. A public hospital closes. Impact on patients’ access to care and health status. JAMA 1990; 264: 2899–2904, doi: 10.1001/jama.264.22.2899.
11.
Mountantonakis SE, Saleh M, Coleman K, et al. Out-of-Hospital Cardiac Arrest and Acute Coronary Syndrome Hospitalizations During the COVID-19 Surge. J Am Coll Cardiol 2020; 76: 1271–1273, doi: 10.1016/j.jacc.2020.07.021.
12.
Lee WR, Berkey B, Marcial V, et al. Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: a secondary analysis of RTOG 85-27. Int J Radiat Oncol Biol Phys 1998; 42: 1069–1075. doi: 10.1016/s0360-3016(98)00348-4.
13.
Young JB, Abraham WT, Albert NM, et al. Relation of low hemoglobin and anemia to morbidity and mortality in patients hospitalized with heart failure (insight from the OPTIMIZE-HF registry). Am J Cardiol 2008; 101: 223–230, doi: 10.1016/j.amjcard.2007.07.067.
14.
Locatelli F, Pisoni RL, Combe C, et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant 2004; 19: 121–132, doi: 10.1093/ndt/gfg458.
15.
Landi F, Russo A, Danese P, et al. Anemia status, hemoglobin concentration, and mortality in nursing home older residents. J Am Med Dir Assoc 2007; 8(5): 322–327, doi: 10.1016/j.jamda.2007.01.028.
16.
Aktas G, Sit M, Dikbas O, et al. Could red cell distribution width be a marker in Hashimoto’s thyroiditis? Exp Clin Endocrinol Diabetes 2014; 122(10): 572–574, doi: 10.1055/s-0034-1383564.
17.
Vayá A, Alis R, Hernández JL, et al. RDW in patients with systemic lupus erythematosus. Influence of anaemia and inflammatory markers. Clin Hemorheol Microcirc 2013; 54(3): 333–339, doi: 10.3233/CH-131738.
18.
Aktas G, Alcelik A, Tekce BK, et al. Red cell distribution width and mean platelet volume in patients with irritable bowel syndrome. Prz Gastroenterol 2014; 9: 160–163, doi: 10.5114/pg.2014.43578.
19.
Song CS, Park DI, Yoon MY, et al. Association between red cell distribution width and disease activity in patients with inflammatory bowel disease. Dig Dis Sci 2012; 57(4): 1033–1038, doi: 10.1007/s10620-011-1978-2.
20.
Bilgin S, Aktas G, Zahid Kocak M et al. Association between novel inflammatory markers derived from hemogram indices and metabolic parameters in type 2 diabetic men. Aging Male 2020; 23(5): 923–927, doi: 10.1080/13685538.2019.1632283.
21.
Emans ME, Gaillard CA, Pfister R, et al. Red cell distribution width is associated with physical inactivity and heart failure, independent of established risk factors, inflammation or iron metabolism; the EPIC-Norfolk study. Int J Cardiol 2013; 168: 3550–3555, doi: 10.1016/j.ijcard.2013.05.002.
22.
Aktas G, Sit M, Karagoz I, et al. Could Red Cell Distribution width be a Marker of Thyroid Cancer? J Coll Physicians Surg Pak 2017; 27(9): 556–558.
23.
Tezol O, Bozlu G, Sagcan F, et al. Value of neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio and red blood cell distribution width in distinguishing between reactive lymphadenopathy and lymphoma in children. Bratislava Medical Journal 2020; 121: 287–292, doi: 10.4149/bll_2020_045.
24.
Förhécz Z, Gombos T, Borgulya G, et al. Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 2009; 158(4): 659–666, doi: 10.1016/j.ahj.2009.07.024.
25.
Lee H, Kong SY, Sohn JY, et al. Elevated red blood cell distribution width as a simple prognostic factor in patients with symptomatic multiple myeloma. Biomed Res Int 2014; 2014: 145619, doi: 10.1155/2014/145619.
26.
Hu L, Li M, Ding Y, et al. Prognostic value of RDW in cancers: a systematic review and meta-analysis. Oncotarget 2017; 8: 16027–16035, doi: 10.18632/oncotarget.13784.