1. Baskaran AB, Grebenciucova E, Shoemaker T, et al. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J Clin Neurol 2023; 19(3): 217–229.
2.
Greenfild AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 2018; 83: 13–26.
3.
Rafiee Zadeh A, Ghadimi K, Mohammadi B, et al. Effects of estrogen and progesterone on different immune cells re-lated to multiple sclerosis. Caspian J Neurol Sci 2018; 4: 83–90.
4.
Wang K, Song F, Fernandez-Escobar A, et al. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci 2018; 356(6): 552–560.
5.
Kamma E, Lasisi W, Libner C, et al. Central nervous system macrophages in progressive multiple sclerosis: Relation-ship to neurodegeneration and therapeutics. J Neuroinflamm 2022; 19(1): 45, doi: 10.1186/s12974-022-02408-y.
6.
Donati D. Viral infections and multiple sclerosis. Drug Discov Today Dis Model 2020; 32: 27–33.
7.
Najafi S, Ghane M, Poortahmasebi V, et al. Prevalence of Cytomegalovirus in Patients with Multiple Sclerosis: A Case-Control Study in Northern Iran. Jundishapur J Microbiol 2016; 9(7): e36582, doi: 10.5812/jjm.36582.
8.
Dominguez-Mozo MI, Casanova I, De Torres L, et al. microRNA Expression and Its Association with Disability and Brain Atrophy in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Front Immunol 2022; 13: 904683, doi: 10.3389/fimmu.2022.904683.
9.
Basak J, Majsterek I. miRNA-Dependent CD4 (+) T Cell Differentiation in the Pathogenesis of Multiple Sclerosis. Mult Scler Int 2021, 2021; 8825588, doi: 10.1155/2021/8825588.
10.
Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15: 865529.
11.
Wang X, Zhou H, Cheng R, et al. Role of miR-326 in neonatal hypoxicischemic brain damage pathogenesis through targeting of the δ-opioid receptor. Mol Brain 2020; 13(51), doi: 10.1186/s13041-020-00579-4.
12.
Reyes-Mata MP, Mireles-Ramírez MA, Griñán-Ferré C, et al. Global DNA Methylation and Hydroxymethylation Levels in PBMCs Are Altered in RRMS Patients Treated with IFN-β and GA-A Preliminary Study. Int J Mol Sci 2023; 24(10): 9074.
13.
Yusuf FLA, Wijnands JMA, Karim ME, et al. Sex and age differences in the Multiple Sclerosis prodrome. Front Neurol 2022; 13: 1017492, doi: 10.3389/fneur.2022.1017492.
14.
Dias de Sousa MA, Desidério CS, da Silva Catarino J, et al. Role of Cytokines, Chemokines and IFN-y+ IL-17+ Double-Positive CD4+ T Cells in Patients with Multiple Sclerosis. Biomedicines 2022; 10(9): 2062, doi: 10.3390/biomedicines10092062.
15.
Mechelli R, Romano C, Reniè R, et al. Viruses and neuroinflammation in multiple sclerosis. Neurosciences 2021; 8: 269, doi: 10.20517/2347-8659.2021.01.
16.
Al-Sabbagh J. The Role of Cytomegalovirus (CMV) and Vitamin D in Multiple Sclerosis (MS): Medico Legal Update 2020; 20(1), doi: 10.37506/mlu.v20i1.471.
17.
Darweesh MF, Al-Sherify AM, Mezher MN. Comparative Study of Human Herpesviruses 6, 7 and Cytomegalovirusin Patients with brain tumors. Int J Pharm Res 2019; 11(2): 60–66.
18.
Shivam J. Role of interleukin-17 signaling pathway in the interaction between multiple sclerosis and acute myocardial infarction. Mult Scler Relat Disord 2022; 58: 103515, doi: 10.1016/j.msard.2022.103515.
19.
Abd WS, Abd Al Kareem RM. Impact of EBV on multiple sclerosis in some of the Iraqi males: Immunological and mo-lecular study. AIP Conf Proc 2020; 2290: 020023, doi: 10.1063/5.0027964.
20.
Reed MD, Yim YS, Wimmer RD, et al. In ivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Nature 2020; 577: 249–53.
21.
Setiadi AF, Abbas AR, Jeet S, et al. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 332: 147–154.
22.
Di Filippo M, Mancini A, Bellingacci L, et al. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Rep 2021; 37(10): 110094.
23.
Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133–1141, doi: 10.1038/ni1261.
24.
Horakova D, Zivadinov R, Weinstock-Guttmann B, et al. Environmental factors associated with disease progression after the first demyelinating event: Results from the multi-center SET study. PLoS ONE 2013; 8(1): e53996, doi: 10.1371/journal.pone.0053996.
25.
Do Olival GS, Lima BM, Sumita LM, et al. Multiple sclerosis and herpesvirus interaction. Arq Neuropsiquiatr 2013; 71(9-B): 727–730, doi: 10.1590/0004-282X20130160.
26.
Hussein D, Darweesh M. Role of EBV infection in Type-1 Diabetic nephropathy pathogenesis with related to IL-12 level in patients. BIO Web of Conferences 2023; 65(05041), doi: 10.1051/bioconf/20236505041.
27.
Azimi M, Ghabaee M, Naser Moghadasi A, et al. Altered Expression of miR-326 in T Cell-derived Exosomes of Patients with Relapsingremitting Multiple Sclerosis. Iran J Allergy Asthma Immunol 2019; 18: 108–113.
28.
Baulina N, Kulakova O, Kiselev I, et al. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317: 67–76, doi: 10.1016/j.jneuroim.2018.01.005.
29.
Honardoost MA, Kiani-Esfahani A, Ghaedi K, et al. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing–remitting multiple sclerosis. Gene 2014; 544: 128–133, doi: 10.1016/j.gene.2014.04.069.
30.
Zahednasab H, Balood, M. The role of miR-326 and miR-26a in MS disease activity. Gene 2014; 548: 158, doi: 10.1016/j.gene.2014.07.014.
31.
Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10(12): 1252–1259.