1. Lendahl U, Lui VCH, Chung PHY, et al. (2021): Biliary atresia – emerging diagnostic and therapy opportunities. EBioMedicine 74: 103689.
2.
Chung PHY, Zheng S, Tam PKH (2020): Biliary atresia: East versus west. Semin Pediatr Surg 29: 150950.
3.
Amatya N, Garg AV, Gaffen SL (2017): IL-17 signaling: The Yin and the Yang. Trends Immunol 38: 310-322.
4.
Antala S, Taylor SA (2022): Biliary atresia in children: Update on disease mechanism, therapies, and patient outcomes. Clin Liver Dis 26: 341-354.
5.
Kyrönlahti A, Godbole N, Akinrinade O et al. (2021): Evolving up-regulation of biliary fibrosis-related extracellular matrix molecules after successful portoenterostomy. Hepatol Commun 5: 1036-1050.
6.
Mills KHG (2023): IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol 23: 38-54.
7.
Klemann C, Schröder A, Dreier A et al. (2016): Interleukin 17, produced by T cells, contributes to hepatic inflammation in a mouse model of biliary atresia and is increased in livers of patients. Gastroenterology 150: 229-241.e5.
8.
Bettelli E, Korn T, Oukka M, et al. (2008): Induction and effector functions of T(H)17 cells. Nature 453: 1051-1057.
9.
Kartasheva-Ebertz D, Gaston J, Lair-Mehiri L, et al. (2022): IL-17A in human liver: significant source of inflammation and trigger of liver fibrosis initiation. Int J Mol Sci 23: 9773.
10.
Meng F, Wang K, Aoyama T, et al. (2012): Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143: 765-776.e3.
11.
Zhang H, Ju B, Nie Y, et al. (2018): Adenovirus mediated knockdown of activin A receptor type 2A attenuates immune induced hepatic fibrosis in mice and inhibits interleukin 17 induced activation of primary hepatic stellate cells. Int J Mol Med 42: 279-289.
12.
Fabre T, Kared H, Friedman SL, et al. (2014): IL-17A enhances the expression of profibrotic genes through upregulation of the TGF- receptor on hepatic stellate cells in a JNK-dependent manner. J Immunol 193: 3925-3933.
13.
Tan Z, Qian X, Jiang R, et al. (2013): IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191: 1835-1844.
14.
Datta S, Novotny M, Pavicic PG Jr, et al. (2010): IL-17 regulates CXCL1 mRNA stability via an AUUUA/tristetraprolin-independent sequence. J Immunol 184: 1484-1491.
15.
Henness S, Johnson CK, Ge Q, et al. (2004): IL-17A augments TNF-alpha-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 114: 958-964.
16.
Herjan T, Yao P, Qian W, et al. (2013): HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol 191: 640-649.
17.
Xiao M, Liu D, Xu Y, et al. (2023): Role of PFKFB3-driven glycolysis in sepsis. Ann Med 55: 1278-1289.
18.
Tian X, Wang Y, Lu Y, et al. (2022): Metabolic regulation of cholestatic liver injury by D-2-hydroxyglutarate with the modulation of hepatic microenvironment and the mammalian target of rapamycin signaling. Cell Death Dis 13: 1001.
19.
Smith-Cortinez N, van Eunen K, Heegsma J, et al. (2020): Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells 9: 2456.
20.
Zeng H, Pan T, Zhan M, et al. (2022): Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 7: 303.
21.
Mejias M, Gallego J, Naranjo-Suarez S, et al. (2020): CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology 159: 273-288.
22.
Dong R, Zheng Y, Chen G, et al. (2015): miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr 60: 84-90.
23.
Shen J, Wang Z, Liu M, et al. (2023): LincRNA-ROR/miR-145/ZEB2 regulates liver fibrosis by modulating HERC5-mediated p53 ISGylation. FASEB J 37: e22936.
24.
Haafiz AB (2010): Liver fibrosis in biliary atresia. Expert Rev Gastroenterol Hepatol 4: 335-343.
25.
Xiao Y, Wang J, Chen Y, et al. (2014): Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling. Cell Signal 26: 925-932.
26.
Tian X, Wang Y, Zhiu Y, et al. (2022): Beta-amyloid deposition in biliary atresia reduces liver regeneration by inhibiting energy metabolism and mammalian target of rapamycin signaling. Clin Transl Gastroenterol 13: e00536.
27.
Ortiz-Perez A, Donnelly B, Temple H, et al. (2020): Innate immunity and pathogenesis of biliary atresia. Front Immunol 11: 329.
28.
Arroyo N, Villamayor L, Díaz I, et al. (2021): GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight 6: e150059.
29.
Du J, Du Y, Chen L, et al. (2023): IL-17 promotes melanoma through TRAF2 as a scaffold protein recruiting PIAS2 and ELAVL1 to induce EPHA5. Biochim Biophys Acta Mol Cell Res 1870: 119547.
30.
Kim TS, Silva LM, Theofilou VI, et al. (2023): Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J Exp Med 220: e20221751.
31.
Mao D, Jiang H, Zhang F, et al. (2023): HDAC2 exacerbates rheumatoid arthritis progression via the IL-17-CCL7 signaling pathway. Environ Toxicol 38: 1743-1755.
32.
Lages CS, Simmons J, Maddox A, et al. (2017): The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65: 174-188.
33.
Herjan T, Hong L, Bubenik J, et al. (2018): IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat Immunol 19: 354-365.
34.
Somma D, Mastrovito P, Grieco M, et al. (2015): CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J Immunol 194: 3286-3294.
35.
Bulek K, Liu C, Swaidani S, et al. (2011): The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12: 844-852.
36.
Hou W, Syn WK (2018): Role of metabolism in hepatic stellate cell activation and fibrogenesis. Front Cell Dev Biol 6: 150.
37.
Bates J, Vijayakumar A, Ghoshal S, et al. (2020): Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol 73: 896-905.