eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2024
vol. 49
 
Share:
Share:
Original paper

Interleukin 17A promotes glycolysis to activate human hepatic stellate cells by mediating the TRAF2/TRAF5/HuR/PFKFB3 axis

Tao Jiang
1
,
Shuangjie Li
1
,
Lian Tang
1
,
Yanfang Tan
1
,
Wenxian Ouyang
1

  1. Department of Hepatopathy and Endocrinology, Hunan Children’s Hospital, Changsha, Hunan Province, P.R. China
Cent Eur J Immunol 2024; 49 (4): 404-424
Online publish date: 2024/11/08
Get citation
 
PlumX metrics:
 
1. Lendahl U, Lui VCH, Chung PHY, et al. (2021): Biliary atresia – emerging diagnostic and therapy opportunities. EBioMedicine 74: 103689.
2. Chung PHY, Zheng S, Tam PKH (2020): Biliary atresia: East versus west. Semin Pediatr Surg 29: 150950.
3. Amatya N, Garg AV, Gaffen SL (2017): IL-17 signaling: The Yin and the Yang. Trends Immunol 38: 310-322.
4. Antala S, Taylor SA (2022): Biliary atresia in children: Update on disease mechanism, therapies, and patient outcomes. Clin Liver Dis 26: 341-354.
5. Kyrönlahti A, Godbole N, Akinrinade O et al. (2021): Evolving up-regulation of biliary fibrosis-related extracellular matrix molecules after successful portoenterostomy. Hepatol Commun 5: 1036-1050.
6. Mills KHG (2023): IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol 23: 38-54.
7. Klemann C, Schröder A, Dreier A et al. (2016): Interleukin 17, produced by  T cells, contributes to hepatic inflammation in a mouse model of biliary atresia and is increased in livers of patients. Gastroenterology 150: 229-241.e5.
8. Bettelli E, Korn T, Oukka M, et al. (2008): Induction and effector functions of T(H)17 cells. Nature 453: 1051-1057.
9. Kartasheva-Ebertz D, Gaston J, Lair-Mehiri L, et al. (2022): IL-17A in human liver: significant source of inflammation and trigger of liver fibrosis initiation. Int J Mol Sci 23: 9773.
10. Meng F, Wang K, Aoyama T, et al. (2012): Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143: 765-776.e3.
11. Zhang H, Ju B, Nie Y, et al. (2018): Adenovirus mediated knockdown of activin A receptor type 2A attenuates immune induced hepatic fibrosis in mice and inhibits interleukin 17 induced activation of primary hepatic stellate cells. Int J Mol Med 42: 279-289.
12. Fabre T, Kared H, Friedman SL, et al. (2014): IL-17A enhances the expression of profibrotic genes through upregulation of the TGF- receptor on hepatic stellate cells in a JNK-dependent manner. J Immunol 193: 3925-3933.
13. Tan Z, Qian X, Jiang R, et al. (2013): IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191: 1835-1844.
14. Datta S, Novotny M, Pavicic PG Jr, et al. (2010): IL-17 regulates CXCL1 mRNA stability via an AUUUA/tristetraprolin-independent sequence. J Immunol 184: 1484-1491.
15. Henness S, Johnson CK, Ge Q, et al. (2004): IL-17A augments TNF-alpha-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 114: 958-964.
16. Herjan T, Yao P, Qian W, et al. (2013): HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J Immunol 191: 640-649.
17. Xiao M, Liu D, Xu Y, et al. (2023): Role of PFKFB3-driven glycolysis in sepsis. Ann Med 55: 1278-1289.
18. Tian X, Wang Y, Lu Y, et al. (2022): Metabolic regulation of cholestatic liver injury by D-2-hydroxyglutarate with the modulation of hepatic microenvironment and the mammalian target of rapamycin signaling. Cell Death Dis 13: 1001.
19. Smith-Cortinez N, van Eunen K, Heegsma J, et al. (2020): Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells 9: 2456.
20. Zeng H, Pan T, Zhan M, et al. (2022): Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 7: 303.
21. Mejias M, Gallego J, Naranjo-Suarez S, et al. (2020): CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology 159: 273-288.
22. Dong R, Zheng Y, Chen G, et al. (2015): miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr 60: 84-90.
23. Shen J, Wang Z, Liu M, et al. (2023): LincRNA-ROR/miR-145/ZEB2 regulates liver fibrosis by modulating HERC5-mediated p53 ISGylation. FASEB J 37: e22936.
24. Haafiz AB (2010): Liver fibrosis in biliary atresia. Expert Rev Gastroenterol Hepatol 4: 335-343.
25. Xiao Y, Wang J, Chen Y, et al. (2014): Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling. Cell Signal 26: 925-932.
26. Tian X, Wang Y, Zhiu Y, et al. (2022): Beta-amyloid deposition in biliary atresia reduces liver regeneration by inhibiting energy metabolism and mammalian target of rapamycin signaling. Clin Transl Gastroenterol 13: e00536.
27. Ortiz-Perez A, Donnelly B, Temple H, et al. (2020): Innate immunity and pathogenesis of biliary atresia. Front Immunol 11: 329.
28. Arroyo N, Villamayor L, Díaz I, et al. (2021): GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells. JCI Insight 6: e150059.
29. Du J, Du Y, Chen L, et al. (2023): IL-17 promotes melanoma through TRAF2 as a scaffold protein recruiting PIAS2 and ELAVL1 to induce EPHA5. Biochim Biophys Acta Mol Cell Res 1870: 119547.
30. Kim TS, Silva LM, Theofilou VI, et al. (2023): Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J Exp Med 220: e20221751.
31. Mao D, Jiang H, Zhang F, et al. (2023): HDAC2 exacerbates rheumatoid arthritis progression via the IL-17-CCL7 signaling pathway. Environ Toxicol 38: 1743-1755.
32. Lages CS, Simmons J, Maddox A, et al. (2017): The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65: 174-188.
33. Herjan T, Hong L, Bubenik J, et al. (2018): IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat Immunol 19: 354-365.
34. Somma D, Mastrovito P, Grieco M, et al. (2015): CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J Immunol 194: 3286-3294.
35. Bulek K, Liu C, Swaidani S, et al. (2011): The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12: 844-852.
36. Hou W, Syn WK (2018): Role of metabolism in hepatic stellate cell activation and fibrogenesis. Front Cell Dev Biol 6: 150.
37. Bates J, Vijayakumar A, Ghoshal S, et al. (2020): Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol 73: 896-905.
Copyright: © 2024 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.