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A b s t r a c t 

Technological advances in healthcare sector have led to an increasing use of new digital techniques for diagnosis 
and therapeutics in medical and dental professions. Artificial intelligence (AI) is one of  the  most commonly 
discussed innovations of the present era that present the capability to transform clinical practice and research. 
Radiomics is an emerging field in quantitative imaging related to AI. Radiomics technology is produced as a re-
sult of combining genomic data, imaging, and pathology results. This new technology can quantify textural in-
formation through mathematical analysis from the region of interest in medical images, which the human eye 
cannot perceive. In oral and maxillofacial imaging, the use of cone beam computed tomography (CBCT) has been 
increasing that in turn encourages AI and radiomics research to assist clinicians in early diagnosis and effective 
treatment planning. The advent of radiomics in dentistry made it possible to improve diagnostic, prognostic, and 
predictive accuracy, by combining radiographic data, biological data, and clinical outcomes. Radiomics technolo-
gy in dentistry is still in early phases of development. The present narrative review aimed to provide an up-to-date 
overview of the workflow and potential applications of radiomics in diagnosing and managing oral maxillofacial 
diseases. 
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Introduction 

Artificial intelligence (AI) research has advanced, 
and is used outside of a computer science department. 
As a result, there was a steady rise in the use of AI appli-
cations in healthcare. AI technology is intended to help 
clinical practitioners in clinical decision-making, and to 
reduce repetitive tasks performed in their daily work [1]. 
Radiomics is a quantitative approach to medical imag-
ing that aims to enhance the available radiographic data 
through sophisticated mathematical analysis. The main 
idea of radiomics is based on the concept that biomedi
cal imaging comprises data reflecting disease-specific pro-
cesses and is accessible by quantitative image analyses [2]. 
Radiomics technology is produced as a  result of com-

bining genomic data, imaging, and pathology results [3]. 
The application of artificial intelligence-aided programs 
in maxillofacial radiology is increasing [4, 5]. 

Vast availability and an increased use of digital imag-
ining techniques, such as computed tomography (CT) and 
cone beam computed tomography (CBCT), enabled the in-
troduction of AI and radiomics in oral and maxillofacial 
imaging. The  advent of  radiomics in dentistry made it 
possible to improve diagnostic, prognostic, and predictive 
accuracy, by combining radiographic, biological, and clini
cal data. Qualitative data extracted from the  radiographs 
using data-characterization algorithms in radiomics allow 
specialists to obtain additional diagnostic information for 
personalized care [6, 7]. Research in radiomics and AI have 
advanced in the  field of  dentistry, demonstrating these 
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technologies’ potential to significantly enhance clinical 
treatment [6-9]. This article highlighted the potential role 
of radiomics in dentistry and oral radiology. 

Concept of artificial intelligence 

Intelligence is referred to as the capacity to learn and 
use information and skills. Artificial intelligence (AI) 
can be defined as the  non-biological potential to per-
form complicated tasks [10]. Currently, AI become one 
of the most sought-after domains in terms of research, 
and has a vital role in many people’s daily activities [11]. 

Artificial intelligence in dentistry mainly depends on 
the output of a number of schemes based on pre-deter-
mined programming models and computer analysis, us-
ing complicated mathematical models and formulas [12]. 
Machine learning (ML) is a  sub-set of  AI. Computer- 
aided detection and diagnosis are two important areas 
of medical applications in machine learning [13]. Algo
rithms for image processing are often used in radiolo-
gy, especially for in-depth evaluation of  multi-planar 
medical images. These techniques start from extracting 
the features of a given image before conducting target de-
tection or classifying the image into pre-defined groups, 
to achieve image detection or classification. Out of  all 
the existing ML models, convolutional neural networks 
(CNNs) are the most utilized technology in medical im-
aging due to their exceptional effectiveness in enhancing 
image diagnostic characteristics [14]. Despite their role 
as promising adjunctive tools in radiology, the applica-
tions of  ML algorithms in dental and maxillofacial ra-
diology are still in early phases of development [15]. 

AI-enabled maxillofacial imaging 

Artificial intelligence is gradually influencing every 
part of  our lives with various conveniences, such as 
speakers with built-in AI, content recommendation sys-
tems, etc. The development of deep learning also opens 
exciting opportunities for the  automation of  picture 
analysis in the fields of dentistry and medicine. Signifi
cant developments have been made in every subject 
of artificial intelligence, including robotics, data mining, 
medical image analysis, and processing [16]. Studies on 
artificial intelligence for diagnosing dental caries, perio
dontal disease, odontogenic cysts and tumors, diseases 
of  the  maxillary sinus, temporomandibular joints, and 
osteosclerosis, have shown promising results in the field 
of oral radiology [4]. AI-enabled programs are used in 
maxillofacial radiology for cephalometric tracing, detec-
tion of caries, alveolar bone loss, periapical pathosis, de-
tection and tracing of the inferior alveolar nerve canal, 
and other similar functions [17]. 

A deep learning hybrid approach was recently de-
veloped by Chang et al.  [18] for the  automated stag-
ing of  periodontitis on dental panoramic radiographs. 

The basis of their AI system was a combination of deep 
learning architecture and traditional computer-assisted 
diagnosis approach. Their system demonstrated greater 
accuracy and reliability in staging periodontitis based 
on the amount of alveolar bone loss. 

Image analysis of  a  maxillofacial radiograph using 
artificial intelligence has been employed for a  variety 
of tasks, including segmentation or localization of teeth, 
evaluation of  bone quantity and quality, estimation 
of age using hand-wrist radiographs based on analysis 
of the pattern of ossifications, and localization of cepha-
lometric landmarks [17, 19]. 

Panoramic radiographs are considered an important 
modality for identifying osteopenia and osteoporosis. 
In post-menopausal females, osteoporosis can be diag-
nosed using the reduction in mandibular cortical width 
and severity of  erosion of  the mandibular lower cortex. 
There are artificial intelligence models in panoramic ra-
diography available to diagnose osteopenia and osteopo-
rosis [17]. Lee et al. [20] analyzed the efficacy of a deep 
convolutional neural network (DCNN)-based CAD sys-
tem in assessing diagnostic performance for the detection 
of osteoporosis on panoramic radiographs, and reported 
satisfactory results. Promising findings from AI-enabled 
technologies have led to a  sharp rise in the  innovation 
of new deep learning techniques for oral and cranio-facial 
radiology, including head and neck oncology [11, 15]. 

Radiomics 

The “-omics” ideology has emerged in the recent de-
cade due to the improvements in high-throughput com-
puting and machine learning methods. It refers to the col-
lective characterization and quantification of  biological 
information pools, including genomics, proteomics, and 
metabolomics. Radiomics consists of  the  automatic ex-
traction of numerical descriptors with mathematical defi-
nitions, referred to as “radiomics features”, from 2-dimen-
sional and 3-dimensional radiographic image series [21]. 

Physical characteristics of the imaged region, such as 
tissue cellularity, heterogeneity, and necrosis, are repre-
sented by radiomics features. According to the literature 
evidence on radiomics research, radiomics traits usually 
correlate with diagnostic and outcome variables [22, 23]. 
Moreover, radiomics comprises algorithms that divide 
input images into basic properties, such as edges, gra-
dients, form, signal intensity, wavelength, and textures, 
which can be further used to categorize or analyze the ra-
diographic image. Therefore, a straightforward definition 
of radiomic analysis is the extraction of quantitative data 
in a radiograph to measure and extract specific param-
eters. As a result, radiomics’ software can define or find 
numerous abstract mathematical properties on images 
based on variations in the spatial patterns of grey levels 
and signal intensity, which are typically not visible to hu-
man sight in images and cannot be assessed visually [7]. 
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The workflow of radiomics involves image acquisition, 
image segmentation, image processing, feature extraction, 
feature selection, dimension reduction, and analysis. Acqui-
sition of  high-quality and standardized imaging is neces-
sary [1, 24]. The source of data for radiomics are retrospec-
tive medical images. Different techniques for imaging may 
lead to changes in image signals and image textures due to 
various parameters used for acquisition and reconstruction 
in medical imaging. Standardization is essential for radio-
mics image analysis, and segmentation also must be repro-
ducible and reliable. Automated segmentation is preferred 
over manual and semi-automatic. The  automated profes-
sional software usually performs the extraction of features 
in radiomics, and shape and texture features are mined [1, 
24]. The workflow of radiomics is shown in Figure 1 [1, 24]. 

Valid and quantitative features from medical imag-
es extracted in radiomics can be combined with other 
characteristics, such as clinical staging, pathological fea-
tures, and tissue molecular markers [1, 24]. 

Various clinical decision-making systems have been 
developed in recent years based on radiomics, which may 
aid in the correlation of radiographic data with biological 
and clinical endpoints, and could increase the accuracy 
of diagnosis and prediction of possible prognosis. Inves-
tigation of correlations between quantitative bio-imaging 
features and disease properties resulted in a sub-specialty 
known as radio-genomics [25, 26]. 

Applications of radiomics in oral  
and maxillofacial radiology 

The potential of  radiomics in the  diagnosis and 
treatment planning of  oral and maxillofacial lesions is 
increasing. Hung et al. [27] have recently reported that 
the  performance of  radiomics models on CT/CBCT 

images showed promising features for maxillofacial 
diseases. The  roles of  radiomics in odontogenic and 
non-odontogenic cysts and tumors of  the  jaws, devel-
opmental deformities of  the dentomaxillofacial region, 
oral cancer, cervical lymph node metastasis, diseases 
of salivary glands, temporomandibular (TMJ) disorders, 
paranasal sinus pathologies, oro-maxillofacial fractures, 
age estimation, and endodontic therapy, are described in 
Table 1 [8, 9, 27-29]. 

Table 1. Applications of radiomics in oral and maxillofacial radiology 

Conditions Applications 

Metastasis of lymph node Non-invasive method for determining the nature of occult cervical lymph nodes in oral squamous cell 
carcinoma patients 

Diseases of salivary gland To help distinguish between benign and malignant salivary gland tumors 

Disorders of temporomandibular joint (TMJ) Individuals with early TMJ osteoarthritis can be screened 

Maxillary sinus pathologies To help doctors recognize lesions in the maxillary sinus, assess the degree of opacification in the area,  
and plan surgical procedures 

Mandibular fractures Helpful for finding hidden condylar fractures 

Dentofacial deformities and malocclusion Identification of those who require surgical skeletal malocclusion correction during an orthognathic evaluation 
To determine how orthognathic surgery can affect the skeletal and soft tissue profile 

Cysts and tumors To distinguish between different odontogenic cysts 
For identifying both odontogenic cysts and tumors 

Dental implant Helpful for early prediction of physiological bone re-modeling 

Age estimation Radiomics of the condyles using CBCT showed potential for use in age classification 

Endodontic treatment To predict obturation outcomes and sub-optimal endodontic treatment 

Image aquisition 

Image segmentation

Image processing 

Feature extraction 

Figure 1. Workflow of radiomics

Feature selection/dimension reduction 

Image analysis
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Radiomics and oral onco-diagnosis 

Head and neck cancer has a  variety of  challenges, 
which are hard to diagnose and treat. The role of imag-
ing is inevitable in cancer, especially in head and neck 
carcinoma (HNC), both pre and post-operatively, for 
treatment planning and determination of  prognosis. 
Contrast-enhanced computed tomography (CECT), 
magnetic resonance imaging (MRI), and positron emis-
sion tomography (PET) imaging, are the  most widely 
used modalities in head and neck cancer (HNC) cases 
for the evaluation of anatomic extent, nodal involvement, 
perineural invasion, skull base and intra-cranial involve-
ment, cartilaginous involvement, calcifications, infiltra-
tions, and associated inflammations related to HNC [30]. 

However, the  diagnosis is challenging due to com-
plex regional anatomy, presence of  numerous small-
sized vital structures, pathways of  primary and recur-
rent tumors, and high intra-tumoral heterogeneity that 
changes depending on the site and biological character 
of the tumor. Radiomics is considered an emerging solu-
tion for the  potential diagnostic challenges associated 
with HNC imaging [31]. 

By applying radiomics in head and neck oncology, the 
radiographic data obtained from various imaging modali-
ties facilitate the exploration of relevant diagnostic data by 
radiomic analysis. Additionally, it is possible to non-inva-
sively capture the diverse structure and biological behavior 
of head and neck malignancies, which might be crucial for 
clinical decision-making  [31]. Radiomics’ data must be 
extracted in a way that can be repeated and the same each 
time for clinical applications to be possible. In onco-diag-
nosis, the radiomics workflow starts with a standardized 
protocol for obtaining high-quality images. Next step is 
the segmentation of tumor, followed by details of the tu-
mor area. Then, the extracted features that show the best 
performance, stability, or other similar defining metrics, 
are selected for using in clinical applications [32]. 

Previous research demonstrated that textural features 
taken from CT and MR images can be used to learn more 
about the tumors’ heterogeneity that is linked to necrosis, 
angiogenesis, and hypoxia [3, 33]. However, a study by 
Ger et al. [34] reported radiomics to be inconsistent with 
regard to the estimation of survival in CT or PET images 
of  head and neck patients. Although discrepancies ex-
ist in the validation of radiomics-aided onco-diagnosis,  
active research is being undertaken worldwide for 
AI-aided clinical decisions feasible in oncology [35]. 

Radiomics and dental implants 

The long-term success of  implant therapy is based 
on peri-implant marginal bone stability. Within one 
year of  functional loading, physiological re-modelling 
of the peri-implant crestal bone can occur [36]. Inade
quate crestal width, traumatic surgery, supra-cranial 

tissue height establishment, microbial colonization 
of implant-abutment interface, implant crest module 
characteristics, number of  abutment connections/dis-
connections, height of prosthetic abutment, mechanical 
stability of  implant/abutment connection, and adapt-
ability, are just a  few of  surgical and restorative fac-
tors, which can affect physiological bone re-modelling 
(PBR), a complex process with multi-factorial etiology. 
It is still debatable whether the  quality of  the  bone at 
the  time of  implant placement influences the develop-
ment of peri-implantitis and/or late implant failure [37]. 
In contrast, radiomics takes a quantitative approach to 
medical imaging with the  goal of  enhancing data that 
doctors have access to through sophisticated mathemat-
ical calculations  [38]. Radiomics develops prediction 
models with sufficient accuracy to help clinical decisions 
by extracting and analyzing “features” or “quantitative 
characteristics” from medical pictures. In a recent study 
by Troiano et al. [39], it was determined that radiomic 
analysis could reveal subtle bone characteristics helpful 
in the  early prediction of  PBR. The  study’s results re-
vealed that after three months of unsubmerged healing, 
specific radiomic features were associated with higher 
PBR around tissue-level implants, and the  researchers 
came to the conclusion that using radiomics in conjunc-
tion with machine learning techniques appears to be 
a promising strategy. 

Future perspectives 

Incorporating deep learning models in radiology has 
improved the  efficiency of  diagnostic data by reducing 
the  time required for data interpretation without com-
promising diagnostic accuracy. It enabled bone age deter-
mination with accuracy comparable to that of a trained 
radiologist [40-42]. However, AI-enabled radio-diagno-
sis and fully automated image interpretation are evolving 
concepts, which will be soon available, the European So-
ciety of Radiology emphasized the inevitable role of hu-
man intervention by trained radiologists in radio-diag-
nosis because radiologists play a vital in both developing 
and validating AI applications in medical imaging [43]. 

Limitations of radiomics include lack of standardiza-
tion in image acquisition, multiple software usage, and 
different statistical approaches, which restricts the com-
parison between studies and data reproduction. It is of  
utmost importance to use standardized imaging protocols 
with open-source software to eliminate the confounding 
variability with respect to radiomics. Variations with scan-
ner manufacturer, model, calibrations, and differences in 
algorithms and software may lead to different results [44]. 

Conclusions 

Radiomics is an  advanced application of  artificial 
intelligence in diagnostic radiology combining clinical 
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and radiographic data, to establish diagnostic and prog-
nostic accuracy. Although radiomics in the field of oral 
and maxillofacial radiology is still in the growing phase, 
it has a considerable potential to be applied in day-to-
day radiology practice. 
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