
Basic research

Corresponding author:
Zhiling Zhu
Department of Integration 
of Western and 
Traditional Medicine,
Obstetrics and 
Gynecology 
Hospital of Fudan 
University
419 Fangjiao Road
200011 Shanghai, China
Phone: 13601882250
E-mail: zhuzhiliifdm@163.com

Department of Integration of Western and Traditional Medicine, Obstetrics and 
Gynecology Hospital of Fudan University, Shanghai, China

Submitted: 8 May 2018
Accepted: 16 June 2018

Arch Med Sci 2019; 15 (4): 1017–1027
DOI: https://doi.org/10.5114/aoms.2018.77068
Copyright © 2018 Termedia & Banach

Oridonin inhibits metastasis of human ovarian cancer 
cells by suppressing the mTOR pathway

Ye Wang, Zhiling Zhu

A b s t r a c t

Introduction: Oridonin, which is isolated from the Chinese herb Rabdosia 
rubescens, has been reported to exhibit an anti-tumorous effect on different 
cancers. In this study, we investigated the molecular mechanism by which 
oridonin suppresses human ovarian cancer.
Material and methods: The inhibition of oridonin on cell proliferation was 
assessed by CCK8 assay. Cell cycle and apoptosis were analyzed by flow 
cytometry, staining with propidium iodide (PI) or annexin-V/PI respective-
ly. The metastasis rate was evaluated using a  transwell migration assay. 
The expression of metastasis-associated genes and mTOR pathway related 
genes were detected by western blot.
Results: We demonstrated that oridonin suppressed the proliferation and 
blocked the cell cycle in G1/S phage and induced apoptosis in SKOV3 and 
A2780 cells (p < 0.01). We further found that the mTOR signaling pathway was 
suppressed by the treatment with oridonin, and the activation of the mTOR 
pathway attenuated the anti-tumorous effect of oridonin in human ovarian 
cancer cells, suggesting that the mTOR pathway was involved in the anti-tu-
morous process of oridonin. Additionally, the activation of the mTOR pathway 
by an exogenous activator reduced the expression level of FOXP3 (p < 0.01), 
thus providing evidence that FOXP3 is a factor that is necessary for the anti-tu-
morous effect of oridonin, and is negatively regulated by the mTOR pathway. 
Conclusions: These results suggested that oridonin suppressed the mTOR 
signaling pathway, up-regulated the FOXP3 level, and inhibited metastasis 
of human ovarian cancer cells.

Key words: oridonin, metastasis, mTOR pathway, FOXP3, human ovarian 
cancer.

Introduction

As one of the most common gynecological malignant tumors, ovarian 
cancer carries the highest mortality [1]. Most ovarian cancers were diag-
nosed at a late stage with metastasis, resulting in a dismal 30% 5-year 
survival rate. In the case that ovarian cancer is diagnosed at an early 
stage, the 5-year survival rate can be raised to an exciting 90% [2–4]. Me-
tastasis is a significant factor of the low survival rate of ovarian cancer; 
therefore, development of more effective drugs to suppress cell growth 
and metastasis has become the key issue for ovarian cancer therapy.

Traditional herb medicines and herbal derived components are play-
ing increasingly important roles in prevention and treatment of cancers 
[5–8], such as Astragali radix [9], Codonopsis pilosula [10] and Andro-
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grapholide [11]. Oridonin, an ent-kaurane diter-
penoid (C20H28O6) isolated from the Chinese herb 
Rabdosia rubescens, has attracted researchers’ 
attention for its various pharmacological activities 
in recent years, such as anti-tumor, anti-bacterial, 
and anti-inflammatory properties [12–14]. It has 
been reported that oridonin inhibited growth and 
induced apoptosis in various types of tumors [15–
18]. For human ovarian cancers, previous studies 
showed that oridonin inhibited the proliferation of 
two types of cell lines that are sensitive or insensi-
tive to the chemotherapeutic drug paclitaxel [19], 
and reversed cisplatin drug resistance effectively 
[20]. In addition, Wang et al. found that oridonin 
not only induced apoptosis, but also inhibited the 
metastasis and invasion of human breast can-
cer cells [21]. The Notch signaling pathway was 
claimed to play an important role in the inhibi-
tion of metastasis induced by oridonin [22, 23]. 
For pancreatic cancer, oridonin was also reported 
to inhibit the metastasis and epithelial-mesen-
chymal transition [24]. However, the mechanism 
underlying the anti-metastasis effect of oridonin 
remains largely unknown.

Oridonin has been reported to suppress cell 
proliferation in ovarian cancer and inhibit metas-
tasis and invasion in human breast cancer cells. 
We hypothesized that oridonin has an antitumor-
al effect on human ovarian cancer cells in several 
processes, including cell proliferation, apoptosis 
and metastasis. The aims of the current study 
were to (i) investigate the effect of oridonin on 
proliferation, apoptosis, and metastasis in human 
ovarian cancer cells, and (ii) explore the molecular 
mechanism of the antitumoral effect of oridonin 
on human ovarian cancer cells.

Material and methods

Cell culture and transfection

SKOV3 cells were grown in McCoy’s 5A (Modi-
fied) Medium (Gibco), and A2780 cells were grown 
in RPMI-1640 Medium (Hyclone), under 5% CO2 at 
37°C. The two media above were supplemented  
with 10% fetal bovine serum (Hyclone), 100 U/ml  
penicillin and 100  μg/ml streptomycin (Gibco). 
Cells were plated at 2 × 105 cells per well in 6-well 
plates for siRNA transfection. Transfection was 
performed using Lipofectamine 3000 (Invitrogen), 
following the manufacturer’s instructions. Cells 
were transfected with siRNAs at a final concentra-
tion of 100 nM. siRNAs were ordered from Gene-
pharma (Shanghai, China). FOXP3 siRNA: 5′-GGC-
GGACCAUCUUCUGGAUdTdT-3′.

Preparation of oridonin solution

Oridonin was bought from Abcam. Oridonin 
powder was dissolved in DMSO (Sigma) at 50 mM 

and stored at –80°C. Storage oridonin solution 
was diluted to 10 mM before use.

Western blot

Cells were harvested, washed with phosphate 
buffered saline (PBS) and lysed with lysis buffer 
(Sigma). The protein concentration of cell lysate 
was determined using the Bicinchoninic acid 
(BCA) protein assay (Invitrogen). Forty micro-
grams of proteins were resolved by electrophore-
sis on 8% or 10% Tris-glycine polyacrylamide gels 
and transferred to polyvinylidene fluoride (PVDF) 
membranes. The membranes were blocked in 
2.5% skimmed milk for 1 hour and incubated 
overnight with the primary antibody to MMP-2,  
FAK, p-mTOR (Ser2448), mTOR (Cell Signaling,  
1 : 1000 dilution), MMP-9, FOXP3 (abcam, 1 : 1000 
dilution) or GAPDH (Bioworld, 1 : 2000 dilution) 
at 4°C. After washing three times, the membranes 
were incubated with the second antibody (ZSGB-
Bio, 1 : 4000 dilution) for 2 h at room temperature. 
Blots of proteins were detected using a chemilu-
minescence detection system (CWBIO).

Cell proliferation and cytotoxicity assay

Cells were plated at 3 × 103 cells per well in 
a 96-well plate 24 h before treatment. After treat-
ment, cell viability was assessed using a  CCK-8 
Kit (Dojindo) following the manufacturer’s in-
structions. In brief, CCK-8 reagent was diluted in 
serum free medium in advance (1 : 10). Medium 
of samples was removed from the 96-well plate. 
Cells were washed with PBS, then CCK 8 reagent  
(100 μl/well) was added into the 96-well plate. 
Samples were incubated at 37°C, and the intensi-
ty of absorbance was assessed using a Multimode 
Reader after 2 h.

Transwell assay

Cells were suspended in serum free medium 
containing 0.1% BSA, and placed in transwell in-
serts (Corning Life Sciences) at a concentration of 
1 × 105 cells per insert. The final volume of medium 
is 200 μl for each transwell insert. Put transwell 
inserts in a  24-well plate containing complete 
medium. After 12 h’ incubation, erase cells in the 
inner side of the membrane. Migrated cells were 
fixed with 4% paraformaldehyde and stained with 
crystal violet (0.1%). Then remove the membrane 
and count cells. Images were taken of five areas of 
the membrane. An average cell count of the five 
images was then used in statistical analysis.

Cell apoptosis assay

Apoptotic cells were assessed using an Apo-
DETECT annexin V-FITC apoptosis detection kit 
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(Sigma-Aldrich) by flow cytometry following the 
kit manual. Cells treated with different concen-
trations of oridonin were digested, washed twice 
with cold PBS, and resuspended in binding buffer. 
Add 5  μl of FITC-labeled annexin V in 190  μl of 
cell suspension, mix gently, then add 5 μl propid-
ium iodide (PI) solution. Incubate cells in dark for  
10 min at room temperature. Cells were analyzed 
on a flow cytometer (BD Biosciences). 

Cell cycle assay

SKOV3 and A2780 cells were plated at the den-
sity of 5 × 105 cells in 6 cm dishes and treated with 
different concentrations of oridonin. After 24 h, 
cells were collected and fixed in ice-cold 70% eth-
anol (v/v) overnight at 4°C. Wash cells with PBS 
and collect cells, resuspend cells in PBS contain-
ing 50 μg/ml PI, 100 μg/ml RNase A, 0.2% Triton 
X-100 and stain for 30 min in the dark, at 4°C. 
Then cells were analyzed by a flow cytometer (BD 
Biosciences). The results were calculated by the 
FlowJo software.

Statistical analysis

All data are shown as mean±SEM. Statistical 
analysis was performed with Student’s t-test to 
evaluate single-factor differences between two 
sets of data, or with ANOVA followed by the Bon-
ferroni post-hoc test for multiple comparisons.

Results

Oridonin inhibited cell proliferation and 
induced cell cycle arrest in human ovarian 
cancer cells

SKOV3 and A2780 cells were treated inde-
pendently with oridonin at different concentrations 
for 24–72 h. After treatment, we used CCK8 assay 
to assess the cell viability of different cell lines. The 
proliferation of SKOV3 cells was almost abolished 
by 15 μM oridonin (Figure 1 A). The suppression of 
cell viability of A2780 was also strengthened along 
with the concentration of oridonin treatment (Fig-
ure 1 B). For the human normal liver cells, HL-7702 
cells, only weak suppression of proliferation was 
detected compared with SKOV3 and A2780 cells 
(Figure 1 C). These results showed that cancer cells 
could be more sensitive to the treatment of orido-
nin compared with normal cells, indicating that 
oridonin is a potential anti-cancer drug, which is 
hypotoxic to normal tissue.

To further study whether the proliferation inhi-
bition is related to cell cycle arrest, we assessed 
the cell progression of human ovarian cancer cells 
treated with different concentrations of oridonin 
by flow cytometry. In SKOV3 cells, treatment with 
oridonin (5–20 μM) induced an increased S phage 

cell population, from 35.85% to 43.17% (20 μM), 
while the cell population of G1 phage had no ob-
vious increase (Figure 1 D, Table I). In A2780 cells, 
we observed that the G1 phage cell population 
increased from 70.75% to 87.10% (20 μM), while 
the cell population of S phage and G2 phage de-
creased (Figure 1 E, Table I). Combining the results 
above, the cell progression of human ovarian can-
cer cells was affected by oridonin, and the cell cy-
cle was arrested in G1/S phage.

Oridonin induced human ovarian cancer 
cells apoptosis

To determine whether oridonin induces cell 
apoptosis in human ovarian cancer cells other 
than the inhibition of cell proliferation, we exam-
ined the apoptosis of human ovarian cancer cell 
lines after 12 h of oridonin treatment (5–20 μM) 
by flow cytometry. As Figure 2 shows, in SKOV3 
(Figures 2 A, C) and A2780 cells (Figures 2 B, D),  
both early and late apoptosis rates were in-
creased by oridonin treatment in two cell lines, in 
a dose-dependent manner (Figures 2 A, B). When 
treating human ovarian cancer cells with 10 μM or 
20 μM oridonin, we observed significant apoptosis 
in SKOV3 and A2780 cells (Figures 2 C, D). Thus, 
oridonin induced cell apoptosis in human ovarian 
cancer cells.

Oridonin inhibited metastasis of human 
ovarian cancer cells through the mTOR 
pathway

Metastasis plays an important role in the de-
velopment of cancer, and it is also a key standard 
in the assessment of new anti-cancer drugs. To 
evaluate the effect of oridonin on the metastasis 
of human ovarian cancer cell lines, we performed 
a transwell assay to assess the metastasis rates of 
oridonin-treated SKOV3 cells (1.25–5 μM). Twelve 
hours after oridonin treatment, erasing the cells 
in the inner side of the membrane, migrated cells 
were fixed and stained (Figure 3 A). Cell counting 
results showed that the treatment with oridonin 
suppressed the metastasis of SKOV3 cells signifi-
cantly in the concentration of 2.5 μM and 5 μM 
(Figure 3 B). We also assessed the expression lev-
el of matrix metalloproteinase-2 (MMP-2), matrix 
metalloproteinase-9 (MMP-9) and focal adhesion 
kinase (FAK) by western blot. The expression of 
these metastasis-related factors decreased af-
ter treatment with oridonin in both SKOV3 and 
A2780 cells (Figures 3 C, D). These data indicated 
that oridonin not only inhibited the survival and 
proliferation, but also suppressed the metastasis 
of human ovarian cancer cells.

Additionally, we found that the mTOR path-
way was suppressed by oridonin treatment. With 
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a  consistent level of total mTOR expression, the 
level of p-mTOR decreased along with the concen-
tration of oridonin treatment (Figures 3 C, D). In 
order to illuminate whether this pathway partic-
ipated in the anti-metastatic process induced by 
oridonin, we treated human ovarian cancer cells 
with an activator of the mTOR pathway, 3BDO, 
and found that the level of p-mTOR was increased 
in both SKOV3 (Figure 4 A) and A2780 (Figure 4 B) 
cells. Using a transwell assay, we assessed the me-
tastasis rate of SKOV3 cells with treatment with 

oridonin and/or 3BDO. The metastasis rate rose 
after treatment with only 3BDO for 12 h (Figure 
4 C). For the group co-treated with oridonin and 
3BDO, the metastasis rate was reduced compared 
with the 3BDO only group. Also the pretreatment 
with 3BDO suppressed the anti-metastatic effect 
of oridonin in SKOV3 cells (Figure 4 C). Therefore, 
oridonin inhibited metastasis of human ovarian 
cancer cells via suppressing the mTOR pathway.

On the other hand, it is unexpected that we also 
found that FOXP3 was up-regulated when SKOV3 
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Figure 2. Oridonin induced apoptotic cell death in human ovarian cancer cells. A, B – Representative images of 
flow cytometry analysis in SKOV3 (A) and A2780 (B) cells. Human ovarian cancer cells were treated with oridonin  
(0–20 µM) for 12 h, then stained with annexin V-FITC/PI, and analyzed by flow cytometry. The early and late apop-
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and A2780 cells were treated with oridonin, and 
the FOXP3 expression level increased along with 
the raised concentration of oridonin (Figures 3 C, 
D). FOXP3 is a member of the forkhead/winged-he-
lix family of transcriptional regulators, and has 
been demonstrated to play important roles in the 
development and function of regulatory T cells 
[25–28]. In addition, studies have recently shown 
that FOXP3 is also expressed in some tumor cells, 
and influenced the development of different can-
cers [29–34]. To clarify the correlation between the 
up-regulation of FOXP3 and the suppression of me-
tastasis, we performed experiments to investigate 
whether the low level of FOXP3 influences the me-
tastasis of human ovarian cancer cells. We designed 

siRNA targeting FOXP3, transfected siRNA for 24 h 
in SKOV3 and A2780 cells, added 2.5 μM oridonin, 
treated for 12 h, and assessed the expression lev-
els of MMP-2, MMP-9, FOXP3, mTOR and p-mTOR 
by western blot. We found under the condition of 
a lower level of FOXP3 that the anti-metastatic ef-
fect of oridonin was suppressed. The suppression of 
MMP-2 and MMP-9 expression was rescued partial-
ly in both SKOV3 and A2780 cells (Figures 5 A, B). 
At the same time, we performed a transwell exper-
iment to assess the metastasis rate of SKOV3 cells 
co-treated with siRNA targeting FOXP3 and orido-
nin. Cells were plated 24 h after the siRNA trans-
fection. Twelve hours after oridonin treatment, we 
found that cells transfected with FOXP3 siRNA had 

Figure 3. Oridonin suppressed the metastasis of human ovarian cancer cells. A – Representative images of mi-
grated SKOV3 cells in transwell assay. SKOV3 cells were treated with oridonin (0–5 μM). After 12 h, the cells in the 
inner side of the membrane were erased, and migrated cells were fixed and stained. B – Plot of the metastasis rate 
of SKOV3 cells in transwell assay.**P < 0.01. C, D – Western blot analysis of MMP-2, MMP-9, FAK, FOXP3, p-mTOR 
and mTOR genes in SKOV3 (C) and A2780 (D) cells treated with oridonin (0–5 μM). GAPDH was used as an internal 
control
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a  higher metastasis rate compared with the cells 
transfected with NC siRNA (Figures 5 C, D). These 
results indicated that FOXP3 plays an important role 
in the anti-metastatic process of oridonin.

Meanwhile, we found that siRNA targeting 
FOXP3 did not disrupt the level of p-mTOR or 
mTOR expression (Figures 5 A, B), while, with the 
treatment with 3BDO, we observed that FOXP3 
was down-regulated along with the activation of 
the mTOR pathway (Figures 4 A, B). Thus, FOXP3 
was negatively regulated by the mTOR pathway. 
Combine with the former results, oridonin inhibit-
ed the mTOR pathway, and then up-regulated the 
downstream gene FOXP3, and induced suppres-
sion of metastasis.

Discussion

In this study, we confirmed the hypothesis that 
oridonin has an antitumoral effect on human 
ovarian cancer cells in several processes, includ-

ing cell proliferation, apoptosis and metastasis. 
We also found that oridonin inhibited the mTOR 
pathway, and upregulated FOXP3 expression level. 

	 3BDO 	 –	 + 	 3BDO 	 –	 +
A

C

B

p-mTOR

mTOR

FOXP3

GAPDH

p-mTOR

mTOR

FOXP3

GAPDH

Oridonin	 –	 –	 +	 +
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Figure 4. Activation of mTOR pathway attenuated the anti-metastatic effect of oridonin. A, B – Western blot anal-
ysis of p-mTOR, mTOR and FOXP3 genes in SKOV3 (A) and A2780 (B) cells treated with 3BDO (30 μM). GAPDH was 
used as an internal control. C – Representative images of migrated SKOV3 cells in transwell assay. SKOV3 cells were 
pretreated with or without 3BDO (30 μM) for 12 h, then oridonin was added (0 or 5 μM). After 12 h, the cells in the 
inner side of the membrane were erased, and migrated cells were fixed and stained

Table I. Oridonin induced cell cycle arrest in human 
ovarian cancer cells

Variable Groups G1 (%) S (%) G2 (%)

SKOV3 Control 49.43 35.85 14.72 

Oridonin 5 μM 47.70 36.51 15.78 

Oridonin 10 μM 49.13 44.08 6.97 

Oridonin 20 μM 50.58 43.17 5.43 

A2780 Control 70.75 20.40 8.84 

Oridonin 5 μM 84.62 8.93 6.42 

Oridonin 10 μM 85.16 10.28 4.56 

Oridonin 20 μM 87.10 9.48 3.43 
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We found that oridonin exerted strong inhibi-
tion of the proliferation of human ovarian cancer 
cells SKOV3 and A2780, but only showed weak sup-
pression of the proliferation of human liver cells HL-
7702. It could be a sign that human ovarian can-
cer cells are more sensitive to oridonin, compared 
with normal cells. This phenomenon indicated that 
oridonin can be a new effective, specific and hypo-
toxic anti-cancer drug, which is less lethal for nor-
mal tissue during the treatment of cancer. 

We also observed that oridonin blocked the 
cell cycle of human ovarian cancer cells in G1/S 

phage. Furthermore, oridonin induced significant 
apoptosis of human ovarian cancer cells. These 
results supported our former result that oridonin 
inhibits the proliferation of human ovarian cancer 
cells (Figure 1). 

Other than the effect on cell proliferation and 
apoptosis, oridonin reduced the metastasis rate of 
human ovarian cancer cells observably. We detect-
ed obvious reduction of the expression of MMP-2 
and MMP-9, which are closely related to cancer 
metastasis, in the cells treated with oridonin. 
These results showed the anti-tumorous effect of 
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Figure 5. Low level of FOXP3 weakened the anti- 
metastasis effect of oridonin. A, B – Western blot 
analysis of MMP-2, MMP-9, FOXP3, p-mTOR and 
mTOR genes in SKOV3 (A) and A2780 (B) cells 
co-treated with oridonin and FOXP siRNA. SKOV3 
cells were transfected with or without FOXP siRNA 
(50 nM) for 24 h, then oridonin was added (0 or 
2.5 μM). After 12 h, cells were harvested for west-
ern blot. GAPDH was used as an internal control. 
C – Representative images of migrated SKOV3 
cells co-treated with oridonin and FOXP siRNA in 
transwell assay. D – Plot of the metastasis rate of 
SKOV3 cells in transwell assay. **P < 0.01
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oridonin in several aspects: inhibition of prolifer-
ation, induction of apoptosis and suppression of 
metastasis of cancer cells.

The main causes of the high mortality of ovarian 
cancer are the early metastasis, early infiltration and 
the resistance to chemotherapy drugs. As the big-
gest obstacle to curing cancers, metastasis has been 
one research hotspot for a  long time. Several Chi-
nese medicines were reported to have a therapeutic 
effect on ovarian cancer, such as Cryptotanshinone 
[35], Scutellaria barbata D. Don [36], Hedyotis diffu-
sa Willd [37], Osthole [38], and others. Previous re-
search also showed that oridonin has anti-tumorous 
properties in several kinds of tumors [10–13], but 
the molecular mechanism remains unclear. 

In this study, we focused on the anti-cancer ef-
fect of oridonin, and found that the mTOR path-
way was partially blocked by oridonin treatment. 
We then performed experiments to activate the 
mTOR pathway in human ovarian cancer cells us-
ing 3BDO. Activation of the mTOR pathway weak-
ened the anti-metastasis function of oridonin 
treatment. We also found that FOXP3 participated 
in this process. The function of FOXP3 has been 
widely studied in T-cell related immune therapy of 
tumors [29, 39]. FOXP3 expression in tumors can 
also regulate the growth, apoptosis [40] or metas-
tasis of tumor cells. Yang et al. claimed that FOXP3 
promotes tumor growth and metastasis by activat-
ing the Wnt/β-catenin signaling pathway and EMT 
in non-small cell lung cancer [41], while FOXP3 
suppresses breast cancer metastasis through the 
down-regulation of CD44 [42]. Previous research 
found that in T-cells, the PI3K-Akt-mTOR signaling 
pathway prevents induction of FOXP3 expression 
via Foxo factors [43–46], which is consistent with 
our conclusion in human ovarian cancer cells. In 
this study, the expression of FOXP3 was induced 
by oridonin treatment, and siRNA targeting FOXP3 
influenced the anti-metastasis effect of oridonin. 
Under oridonin treatment, FOXP3 was up-regu-
lated while the mTOR pathway was suppressed. 
It suggests that FOXP3 could be negatively regu-
lated by the mTOR pathway. As evidence support-
ing this speculation, FOXP3 was down-regulated 
when the mTOR pathway was activated by 3BDO 
(Figures 4 A, B). These results suggested that the 
mTOR pathway and FOXP3 played important roles 
in the anti-metastatic regulatory process of orido-
nin. Oridonin inhibited the mTOR pathway, and 
then increased the FOXP3 level, down-regulated 
metastasis-related factors such as MMP-2 and 
MMP-9, and suppressed the metastasis of human 
ovarian cancer cells. 

When the SKOV3 cells were treated with FOXP3 
siRNA only, we did not detect a significant rise of 
MMP-2 or MMP-9 expression level (Figures 5 A, B).  
The reduction of FOXP3 up-regulated MMP-2 and 

MMP-9 expression levels during siRNA/oridonin 
co-treatment, but not in the condition without 
oridonin. The reason for this phenomenon may 
be that FOXP3 is a  necessary factor in the an-
ti-metastatic process of oridonin, but a  low level 
of FOXP3 is not sufficient to repress the metas-
tasis independently when cells were not exposed 
to oridonin. The molecular mechanism of orido-
nin suppressing the metastasis of human ovarian 
cancer still remains to be further clarified.

The present study is limited by the lack of ev-
idence in other human ovarian cancer cell lines 
and in animal models. Experiments were conduct-
ed in two human ovarian cancer cell lines, SKOV3 
and A2780. Further confirmation in other ovarian 
cancer cell lines and in a mouse tumor model are 
needed to investigate the potential applicability 
of oridonin in the treatment of different types of 
ovarian cancer. Additionally, our results showed 
that the mTOR pathway and FOXP3 are involved 
in the antitumoral process, but how oridonin sup-
pressed the mTOR pathway, and then up-regulat-
ed FOXP3, remains unclear. Thus, we need further 
exploration of the molecular mechanism of the 
antitumoral effect of oridonin on ovarian cancer 
in future research.

In conclusion, we found that oridonin sup-
pressed the proliferation, blocked the cell cycle in 
G1/S phage, and induced cell apoptosis in human 
ovarian cancer cells. Moreover, through suppress-
ing the mTOR signaling pathway, oridonin inhibit-
ed the metastasis of human ovarian cancer cells, 
a process in which FOXP3 played an important role.
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