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A b s t r a c t

Introduction: This study aimed to screen immune-related marker genes of ischemic stroke (IS).
Material and methods: Two IS-related gene expression datasets were downloaded. The significantly differentially expressed 
genes (DEGs) and miRNAs (DEMs) between IS and control groups were selected. The differential immune cells were anal-
ysed. Weighted gene co-expression network analysis (WGCNA) was applied to analyse immune-related genes, followed by 
function analysis and interaction network construction. Then, key genes were further screened using optimization algo-
rithm to construct a diagnostic model. Finally, miRNA regulatory network of several key genes was established.
Results: In total 321 DEGs and 140 DEMs were obtained. 11 immune cell types were significantly different between IS and 
control groups. WGCNA identified two key modules, involving 202 differential immune genes. The greenyellow module was 
enriched in biological processes and pathways associated with T cells, while the midnightblue module was mainly asso-
ciated with apoptosis, and inflammatory response-related functions and pathways. Protein interaction network identified 
10 hub nodes, such as CD8A, ITGAM and TLR4. LASSO regression selected 8 key feature genes, and a risk score model was 
established. Key model genes were enriched in 63 GO biological processes, such as microglial cell activation, and B cell 
apoptotic process, and 3 KEGG pathways, such as negative regulation of nuclear cell cycle DNA replication, and hematopoi-
etic cell lineage. Finally, a total of 25 miRNA-target relationship pairs were obtained.
Conclusions: This study identified some immune-related marker genes and constructed a  diagnostic model based on  
8 immune-related genes in IS. 
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Introduction 
Stroke is a  leading cause of disability around the 

world. Ischemic stroke (IS) accounts for more than  
80% of stroke cases. IS usually results from sudden 

interruption of blood flow and decreased oxygen levels 
in the brain [8], which can trigger a complex chain of 
neurological events including calcium overload, oxida-
tive stress, excitotoxicity, apoptosis and inflammation, 
resulting in focal brain damage [10]. Nowadays, with 



172 Folia Neuropathologica 2024; 62/2

Yingfeng Weng, Bin Liu, Zhibin Chen, Yangbo Hou, Dan Wu, Lin Ma, Guoyi Li

the prevalence of unhealthy lifestyles and exposure to 
cardiovascular risk factors, the burden of IS is rapidly 
increasing [1]. As a result, the early diagnosis and treat-
ment of IS faces huge challenges.

A  growing number of studies have demonstrated 
that neuroinflammation, including circulating immune 
cells infiltration, microglia activation, and upregula-
tion of pro-inflammatory cytokines plays a  key role 
in stroke-induced brain damage [9,18,35]. Specially, 
infiltration of inflammatory cells can stimulate strong 
immune response and lead to immune micro-environ-
ment dysfunction in the central nervous system, fur-
ther aggravating IS [20]. Currently, it has been proposed 
that immunomodulation could delay the progression 
of IS, and improve the neurological function [12,13]. 
Therefore, immunoregulatory therapy as an alternative 
to traditional therapy is worthy of further study. Where-
as, systematic studies on the distribution of peripheral 
blood immune cell subtypes and immune-related gene 
modules in IS patients are still limited.

This study was designed to screen immune-related 
marker genes of IS based on the gene sequencing 
datasets (GSE16561 and GSE22255) obtained from  
the Gene Expression Omnibus (GEO). The BP terms and 
KEGG pathway enrichment analyses of key model 
genes were constructed. Additionally, a  diagnostic 
model was established with the immune-related genes. 
The findings of this study could provide a reliable the-
oretical basis for the diagnosis of IS and the target of 
immunotherapy.

Material and methods 

Data download 
Ischemic stroke-related dataset GSE16561 was 

downloaded from the NCBI GEO [2] database, which 
included peripheral blood tissue samples from 39 pa- 
tients with IS and 24 normal controls. GPL6883 Illu-
mina HumanRef-8 v3.0 expression BeadChip platform 
was used for gene chip determination. This dataset 
was used as a training set. 

Another dataset GSE22255 was also downloaded 
from the GEO database. The peripheral blood mono-
nuclear cell tissue samples of 20 patients with IS and 
20 normal controls were selected. GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array platform was used for microarray determination. 
The dataset was mainly used to validate the diagnostic 
model (Fig. 1). 

Additionally, the miRNA high-throughput sequenc-
ing data of IS, GSE110993 including 20 IS patients and 
20 matched healthy control subjects, were downloaded 
from the GEO database. Here, the miRNA result files 
were directly downloaded after DESeq2 pre-processing 
and differential analysis for subsequent analysis.

Data pre-processing
For the above two gene chip datasets (GSE16561 

and GSE22255), the probe expression matrixes after 
pre-processing, standardization and log2 transforma-
tion were obtained from the GEO database, and then 
the annotation file of the platform was downloaded. 
The probes that did not match the gene symbol were 
deleted by one-by-one matching between the probe 
number and the gene symbol. We took the mean value 
of different probes as the expression value of this gene 
for subsequent analysis.

Differentially expressed genes (DEGs) 
and miRNAs (DEM) screening 
Based on the analysis dataset, the classical Bayes-

ian method in limma 3.10.3 [31] was used to analyse 
the differentially expressed genes (DEGs) of IS vs. nor-
mal controls. The p value and log FC value were adjust-
ed with BH method. The differential expression thresh-
olds were adj. p value < 0.05 and |logFC| > 0.585.

For miRNA data, we directly set the threshold based 
on the miRNA result file. The differentially expressed 
miRNAs (DEMs) with p < 0.05 and |logFC| > 0.585 were 
regarded as significant DEMs. Volcano plots were used 
for visualization display of DEGs and DEMs, respectively.Fig. 1. Algorithm flowchart
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Immune infiltration analysis
To study the infiltration of immune cells in IS and 

normal controls, the CIBERSORT algorithm [4] and LM22 
gene set were used to calculate the infiltration ratio 
of 22 kinds of immune cells in samples of GSE16561 
dataset. Then, according to the grouping of samples, 
Wilcoxon test was applied to calculate the significance 
p value of each immune cell between IS and normal 
controls, and cells with p < 0.05 were retained for the 
following analysis.

Screening of immune cell-related genes 
through weighted gene co-expression 
network analysis (WGCNA)
Weighted gene co-expression network analysis 

(WGCNA) is used for the analysis of gene expression 
patterns of samples, which could cluster genes with 
similar expression patterns, and distinguish modules 
through gene expression similarity. Then, the correla-
tions between the modules, and between the module 
and samples were calculated to screen highly relevant 
modules, and analyse the genes in the module to find 
the target genes relevant to the study.

To find out the module genes highly related to dif-
ferential immune cells in GSE16561, we first ranked 
all genes in the dataset according to the variance 
from the largest to the smallest. Then, the genes with  
the top 25% of variance were selected for analysis 
using R package WGCNA [21] (version 1.61) based on 
the above differential immune cells as traits.

During WGCNA, the elements of the defined gene 
co-expression matrix are the weighted values of gene 
correlation coefficients, and the selection criterion of 
the weights is to make the connections among genes  
in the network following scale-freenetworks. Here, 
the weighted value is “softPower”. Firstly, by setting 
a series of powers, the square of correlation coefficient 
between the connectivity degree k and p(k) and the 
average connectivity degree under each power were 
calculated, and then the appropriate power value was 
selected. Secondly, with clustering and dynamic prun-
ing method, the parameters (minModuleSize = 50; 
MEDissThres = 0.3) were set to cluster the highly cor-
related genes into modules. The correlation between 
modules and phenotype (infiltration level of differential 
immune cells) was finally calculated. The modules with 
correlation coefficient > 0.5 and p < 0.05 were closely 
related to immunity.

Differential immune gene screening  
and analysis
The intersection genes of immune cell-related gen-

es and DEGs were obtained, and the function analysis 

and PPI network analysis were conducted based on  
the differential immune genes.

Based on the differential immune genes obtained 
above, Gene Ontology (GO) biological process (BP) [1] 
and pathway [17] enrichment analyses were carried 
out respectively using the online tool DAVID [30], and 
the number of enriched genes was at least 2.

To understand the protein interactions between  
the differential immune genes obtained above, the 
online database STRING [27] (version 11.0) was used 
to predict and analyse the interaction relationship 
between the gene-encoded proteins. Protein-protein 
interaction (PPI) score was set to be 0.4. In addition, 
the topological properties of nodes were analysed 
using CytoNCA [34] plug-in 2.1.6, including “degree”, 
“betweenness” and “closeness”. The top 10 inter-
section genes ranked by topological properties were 
selected as hub genes.

Key genes screening and diagnostic 
model construction
Based on the hub genes, LASSO algorithm was used 

to screen feature genes. Then, glmnet package version 
4.0-2 [15] in R 3.6.1 was used for regression analysis of 
the hub genes preliminarily screened, and the parame-
ter was set to be: nfold = 20 (20-fold cross-validation). 
The following formula was further used for model con-
struction:

Risk score (RS) = Σ bgene × Expgene

Where βgene represents the LASSO regression coef-
ficient of each gene, and Expgene represents the expres-
sion of the gene in each sample.

After obtaining RS, the median value was used as 
the critical value, and the samples were divided into 
high- and low-risk groups for subsequent analysis.

Furthermore, in order to verify whether the model 
had a  diagnostic value, GSE22255 was used for vali-
dation. Briefly, the expression levels of model genes 
in each sample of GSE22255 were extracted, and the 
same formula was used to construct the model in 
combination with the LASSO regression coefficient 
obtained above. The ROC curve was drawn and com-
bined with the grouping information of samples.

Evaluation of diagnostic efficacy  
of key genes
For the key genes obtained from the above analy-

sis, the data of the training set and validation set were 
used for expression verification, respectively. The expres-
sion values of key genes in the data set were extracted,  
and then combined with the sample grouping, the sig-
nificance of gene expression differences was calculated 
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by t-test. The expression distribution box diagram was 
drawn. Moreover, the diagnostic ROC curves of  key genes 
were drawn in the training set and validation set.

Enrichment analysis of key model 
genes
The BP terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways enriched by the key model 
genes were analysed using ClueGO plug-ins [3] (version 
2.5.9) in Cytoscape software [19] (version 3.4.0). The 
significant threshold was p value < 0.05. Cytoscape 
software was used to visualize the enrichment results.

miRNA regulatory network construction
Based on the model genes obtained above, we 

used miRWalk 3.0 [32] database for miRNA prediction, 
and then took the intersection of the predicted miRNA 
and the DEMs obtained by the previous screening.  
The mRNA-miRNA regulatory relationships were visual-
ized using Cytoscape software.

Results

Data pre-processing and differential 
expression analysis
According to the method, the two sets of gene 

expression microarray data were firstly downloaded, 
pre-processed and annotated to obtain the expression 
matrix. 

According to the thresholds, 247 up- and 74 down- 
regulated DEGs were obtained. Additionally, 11 up- and 
129 down-regulated DEMs were obtained. The differ-
ential volcano plots of DEGs and DEMs are shown in 
Figure 2A. As presented in the volcano plots, the DEGs 
and DEMs of the two groups could be significantly sep-
arated.

Immune infiltration analysis
The infiltration ratio of 22 immune cell types in all 

samples of dataset GSE16561 was calculated, as shown 
in Figure 2B. Additionally, 11 immune cell types were 
significantly different between the two groups, includ-
ing T cells CD8, B cells naïve, T cells CD4 memory acti-
vated, T cells follicular helper, T cells regulatory (Tregs), 
T cells γδ, etc. (Fig. 2C).

Screening of immune cell-related 
genes with WGCNA
WGCNA analysis was based on GSE16561 gene 

expression data, and a soft threshold of 6 was selected 
(Fig. 3A). Then, the modules with correlation coefficient 
> 0.7 and dissimilarity coefficient < 0.3 were merged 

and finally integrated into four modules (Fig. 3B). Fur-
ther, by calculating the correlation between the fea-
ture vector gene of each module and phenotype, the 
correlations between the MEgreenyellow module and  
T cells CD8, as well as the MEmidnightblue module 
and macrophages M0 and neutrophils were all over 0.5  
(Fig. 3C). Therefore, the two modules were considered 
as the key modules for the subsequent analysis.

Differential immune gene identification 
and function and pathway enrichment 
analysis
The intersection of immune cell-related module 

genes and DEGs obtained above was taken. As shown 
in Figure 4A, 76 differential immune genes from the 
greenyellow module and 126 differential immune 
genes from the midnightblue module were obtained.

Enrichment analyses of 76 differential immune 
genes from the greenyellow module and 126 differ-
ential immune genes from the midnightblue module, 
respectively were made. The top 10 items are present-
ed in Figure 4B-E. Briefly, the greenyellow module was 
enriched in biological processes and pathways related 
to T cells, while the midnightblue module was associ-
ated with inflammatory response, apoptosis, and ath-
erosclerosis.

Protein interaction network  
and correlation analysis
STRING was used to predict the interaction rela-

tionship between the above-mentioned differential 
immune gene proteins, and 144 proteins and 523 inter-
action relationship pairs were predicted, as shown in 
Figure 5. These genes directly interacted closely with 
each other. Additionally, the top 20 nodes of each topo-
logical property were taken and the intersection was 
identified, obtaining 10 nodes, including CD8A, ITGAM, 
TLR4, CD19, SELL, TLR2, FCGR1A, CD163, FOS and BCL6.

Key genes screening and diagnostic 
model construction
LASSO regression analysis was carried out on 

the 10 hub genes obtained above, and 8 key feature 
genes including CD16, CD19, CD8A, FCGR1A, BCL6, 
FOS, ITGAM and TLR2 were obtained (Fig. 6A). The risk 
score (RS) model was then constructed by combining 
the above 8 genes and corresponding regression coef-
ficients (Fig. 6B). According to the ROC curve, the AUC 
was above 0.9, indicating that the model had a good 
effect on disease prediction (Fig. 6C). In order to ver-
ify the prediction effect of the model, an RS model 
was constructed in GSE22255. As shown in Figure 6D,  
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Fig. 2. A, B) Volcano maps of differentially expressed genes (A) and miRNAs (B) (green represents down- 
regulation, red represents up-regulation, and black represents non-significant genes). C) Landscape map 
of infiltration level distribution proportion of 22 kinds of immune cells in each sample. D) Bar charts of the 
infiltration levels of 22 types of immune cells in disease and control groups.
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Fig. 3. A) WGCNA power value result. Left: The ordinate represents the square value of the correlation 
coefficient of the connection degree k and p(k). The higher the square of the correlation coefficient is, the 
closer the network is to the distribution of the scale-free network. Right: The ordinate represents average 
connectivity. B) WGCNA module clustering and merging results. Module clustering results. The vertical axis 
shows the different coefficients.  
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B

C

Fig. 3. Cont. B) WGCNA module clustering and merging results. Gene modules generated by systematic 
clustering tree and dynamic shear method. Different colours represent different gene modules in the figure. 
C) Correlation analysis between WGCNA module and differential immune cells. The top number indicates 
the correlation coefficient, while the bottom number indicates the significance value.
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Fig. 4. A) The intersection Venn diagram of differentially expressed genes and immune cell related module 
genes. B) Top 10 results of GO enrichment of differential immune genes in the greenyellow module. 
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Fig. 5. Protein interaction network constructed by differential immune gene proteins (round represents 
up-regulated genes, inverted arrow represents down-regulated genes, and different colours represent dif-
ferent modules).
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Fig. 6. A, B) LASSO regression process parameter diagram. A) The vertical coordinate is the coefficient 
of variables, and the horizontal coordinate is log(Lambda). With the change of lambda, the coefficient 
of most variables is finally compressed to 0. B) The two dotted lines indicate two special lambda values.  
C, D) Left: Risk score distribution; Right: Predictive ROC curve of the model for disease occurrence in GSE16561  
(C) and GSE22255 (D).
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Fig. 7. A) Expression box diagrams of 8 key genes in the training set (top) and validation set (bottom).  
B) ROC curves of 8 key genes in the training set (left) and validation set (right).
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Fig. 8. A) Visualization results of GO BP and KEGG pathway enriched in key model genes (top: Gene-func-
tional network diagram. Diamonds represent genes, circles represent GO BP or KEGG pathway, and dif-
ferent colours represent different functional clusters; bottom: The proportion of each functional cluster). 
B) The miRNA-target regulatory network (yellow circle represents up-regulated gene, blue inverted arrow 
represents down-regulated gene, green square represents differentially down-regulated miRNA, and darker 
colour indicates more down-regulated). 

A

B
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the AUC was above 0.8, which indicated that the pre-
diction effect of the model was good.

Evaluation of diagnostic efficacy  
of key genes
As described in the method, the expression box dia-

grams of 8 model genes in the training and validation 
set were respectively drawn, as shown in Figure 7A. 
The training set was consistent with the validation set 
for the expression trend of 8 genes. Except for ITGAM 
and TLR2 that did not reach the significant level in the 
validation set, the other genes all reached significant 
differences. 

In addition, the diagnostic ROC curves of the 8 key 
genes are presented in Figure 7B. The diagnostic AUC in 
the training set was above 0.7, and in the validation set 
was above 0.6, proving that they had a good diagnostic 
effect.

GO and KEGG enrichment analyses  
of key model genes
As shown in Figure 8A, a total of 63 GO biological 

processes, such as conditioned taste aversion, microg-
lial cell activation, and B cell apoptotic process, as well 
as 3 KEGG pathways, including Leishmaniasis, negative 
regulation of nuclear cell cycle DNA replication, and 
hematopoietic cell lineage.

miRNA regulatory network 
construction of key genes
miRNA prediction was performed on the above 8 key 

genes, and the intersection of predicted miRNAs and 
differentially expressed miRNAs was further obtained. 
Finally, 25 miRNA-target pairs were obtained, includ-
ing 7 key model genes and 21 differentially expressed 
miRNAs. The miRNA-target network was constructed as 
shown in Figure 8B.

Discussion
Ischemic stroke is a  chronic disease that mainly 

affects cerebral blood vessels. More and more stud-
ies have shown that the direct and indirect immune 
inflammatory responses induced by IS play a key role 
in the prognosis of cerebral vascular disease [11,26]. 
In this study, we focused on immune-related marker 
genes in IS and constructed a diagnostic model based 
on 8 immune-related genes through WGCNA, which 
could provide a reliable theoretical basis for the diag-
nosis of IS and the target of immunotherapy. 

Following acute stroke, a  variety of immune cells 
enter the brain parenchyma. In the early stage after 
stroke, microglia began to increase, and within 1 day 

after stroke, macrophages, monocytes, myeloid den-
dritic cells, and neutrophils appeared and lasted until 
seven days after stroke. Additionally, T and B cells 
were also detected to have a  small increase [6,25]. 
These immune cells have played important roles in the 
regulation of the progression of IS [14]. In this study, 
11 immune cell types were significantly differential 
between IS and normal controls, and these immune 
cells included the cells mentioned above. Therefore, 
immune cells can not only participate in neuroinflam-
matory processes, but also maintain the homeostasis 
of the central nervous system. 

On the basis of the differential immune cells,  
202 immune-related genes were selected through 
WGCNA, which were involved in T cell, apoptosis, and 
inflammatory response related functions and pathways.  
T cells are important immune cells that participate in 
the nosogenesis of nervous system diseases via the 
induction of the innate and adaptive immune respons-
es. Following stroke, the T cells migrate to the lesion 
edge preferentially, increase in number after some 
days, and can be identified in the brain parenchyma 
up to 30 days after ischemia [33]. It has been reported 
that cell death and inflammation are two key biological 
processes in physiology and pathology [41]. Apopto-
sis may be an important cause of neuron death after 
acute brain ischemia, and brain ischemia may lead to 
IS [28]. Inflammation usually begins in the acute phase 
of IS and may become the dominant injury mecha-
nism within hours and persist for days [23,40]. There-
fore, modulating the inflammatory component may be 
a therapeutic option for IS. 

Presently, several models have been proposed for 
the diagnosis of stroke. For instance, Laskowitz et al. 
[22] presented a  logistic model for the diagnosis of 
acute stroke. Lu et al. [24] developed a Bayesian frame-
work for the construction of a  high-confidence syn-
drome predictor. Different from the models above, our 
study constructed the model based on the immune-re-
lated gene, and 8 genes were finally selected after LAS-
SO regression analysis, and a  diagnostic model was 
established. The AUC of ROC curves was more than 0.8, 
indicating a good prediction performance for the mod-
el. The model genes have also been associated with IS. 
For example, the c-Fos level was found to significantly 
increase following experimental cerebral ischemia [36]. 
BCL6 has been previously reported to attenuate inflam-
mation [5]. Recently, BCL6 was also identified to alle-
viate oxygen and glucose deprivation/reoxygenation 
induced cell inflammation damage and oxidative stress 
in IS [42]. Function analysis showed that BCL6 was 
enriched in apoptosis and inflammation-related func-
tion, such as B cell apoptotic process, and mast cell cyto-
kine production. Additionally, BCL6 was predicted to be 
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regulated by miR-126-3p in the present study. The miR-
126 plays a key role in the pathogenesis of IS and par-
ticipates in endovascular inflammation [29,38]. Inter-
estingly, FCGR1A was also regulated by miR-126-3p, 
and was involved in the pathway of immunoglobulin 
binding in this study. Immunoglobulin has been report-
ed to protect brain cells against ischemic damage [7]. 
Both ITGAM and TLR2 were regulated by miR-185-5p. 
miR-185 is one of miRNAs involved in angiogenesis in 
IS, and has been suggested to be a  potential serum 
diagnostic indicator of neurological injury after IS 
[16,37]. Moreover, both ITGAM and TLR2 were enriched 
in function associated with microglial cell activation.

Microglial cells are resident immune cells in the cen-
tral nervous system, activation of which plays a central 
role in pathology of ischemic tissue, including IS [39]. 
Taken together, these model genes were associated 
with IS progression via some immune inflammation 
and apoptosis-related functions and pathways. 

In conclusion, our study identified some immune-re-
lated marker genes and constructed a diagnostic model 
based on 8 immune-related genes in IS. Our results fur-
ther suggested the critical role of immune and inflam-
mation in IS. However, this study obtained some theo-
retical results only through the bioinformatics analysis, 
which need to be verified in clinical samples.
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