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Introduction: Lung cancer is the most 
common type of cancer, causing world-
wide mortality. Therefore, this study is 
necessary for continuing research into 
new effective and safe treatments. 
Recently, herbal medicines have been 
used for the  treatment of  various 
diseases such as cancer. This study 
aimed to investigate the  potential 
anti-proliferative activity and inves-
tigate the mechanisms of hesperidin 
extract on the non-small lung cancer 
cells A549 and H460 vs. cisplatin via 
targeting the miR 34a/PD-L1/NF-κB 
signalling pathway.
Material and methods: To determine 
the cytotoxic effects of the hesperidin 
extract on non-small lung cancer cells, 
sulphorhdamine B assay was per-
formed. To show the inhibition of mi-
gration by hesperidin extract, wound 
healing assay was conducted. A quan-
titative polymerase chain reaction test 
was used to quantify the expressions 
of miR-34a, programmed cell death 
ligand-1, epidermal growth factor re-
ceptor (EGFR), and P53 genes, which 
are involved in apoptosis pathway. 
Also, cell cycle assay was performed 
by using a flow cytometer. 
Results: The hesperidin extract could 
significantly inhibit proliferation 
of non-small lung cancer cells A549 
and H460. Western blot assay demon-
strated that hesperidin induced sup-
pression of nuclear factor κB signalling 
pathway. The messenger RNA expres-
sion levels of MiR-34a and P53 were 
up-regulated significantly by hesperi-
din treatment, while the EGFR and P53 
genes were down-regulated. The flow 
cytometer confirmed that cell cycle 
arrest occurred at the sub-G1 and G2 
phases in A549 and H460, respectively. 
Conclusions: Our study demonstrated 
that hesperidin extract could signifi-
cantly inhibit non-small lung cancer 
cell growth by induction of the apop-
tosis signalling pathway. Therefore, 
hesperidin might open novel strat-
egies for effective and safe cancer 
treatment and reduce the adverse side 
effects of several chemotherapeutic 
treatments such as cisplatin.

Key words: non-small cell lung cancer, 
hesperidin, MiR-34a, apoptosis, NF-κB, 
cisplatin, PDL-1.
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Introduction

One of the main reasons of death in all countries is cancer, causing around 
10 million deaths were recorded in 2020 [1]. According to the World Health  
Organisation (WHO), the main frequently encountered reason for cancer 
deaths in 2020 was lung cancer (1.80 million deaths) [2]. Non-small cell lung 
cancer (NSCLC) is the most common form of lung cancer, accounting for 
around 85% of lung cancers. Cisplatin combination chemotherapy is currently 
used as a standard treatment for patients having NSCLC. The survival rate 
ranges from approximately 6.9–11.3 months, and the response rate of pa-
tients to chemotherapy ranges 20–35%. Patients suffering from lung cancer 
often develop resistance to cisplatin. Drug resistance to chemotherapeutic 
drugs remains one of the main reasons for the failure of several cancer treat-
ments such as lung cancers [3]. Recently, medicinal plants are considered as 
one of the most efficient and safest medical therapies. These herbal treat-
ments are also the main source of flavonoids, which play an important role 
in the healing and management of cancer. Additionally, the fact that these 
medications generally have fewer side effects than synthetic medications 
has led researchers to investigate their molecular mechanisms [4]. According 
to the WHO, herbal medicine accounts for around 80% of the health care in 
most developing countries. Many studies have declared that herbal treatment 
may inhibit tumour proliferation and induce cytotoxic properties in malignant 
cells without causing any side effects in normal cells. Interestingly, the apop-
tosis pathway is one of the most essential signalling pathways which can be 
modulated by anticancer agents. Many studies have suggested that extracts 
derived from plants may play a role in cancer treatment and prevention [5].

Hesperidin, a flavonoid glycoside [6], has been demonstrated to have 
anticancer properties by increasing apoptosis and suppressing proliferation 
in numerous cancer types, including breast and lung cancer [7]. Hesperidin 
is 5, 7, 3-trihydroxy-4-methoxy-flavanone7 rhamnoglucoside. Hesperidin 
suppresses proliferation and stimulates apoptosis in lung malignant cells, 
without any toxic effects on normal epithelial lung cells. Additionally, hes-
peridin inhibits the invasion and migration of lung malignant cells by regu-
lation of the SDF1/CXCR4 axis [8]. In in vivo studies, hesperidin pretreatment 
effectively protects against the progression of carcinogen-induced cancer 
of lungs from several carcinogens. In vitro studies have shown that hesper-
idin reduces the proliferation of NSCLC cells by controlling the activation 
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of several pathways linked to apoptosis and immunologi-
cal reactions. To treat NSCLC, hesperidin may be employed 
as a novel anti-cancer agent [9].

To promote the proliferation, cytokine production, and 
cytotoxicity of cancer cells, programmed cell death ligand-1 
(PD-L1), a transmembrane protein, selectively binds to PD-1 
[10]. According to reports, the overexpression of PD-L1 in 
cancer cells promotes the growth of the disease by mak-
ing the cells more resistant to pro-apoptotic stimuli like 
interferon and by activating several transcription factors 
like nuclear factor κB (NF-κB) and epidermal growth fac-
tor (EGF) [11]. Nuclear factor κB induction includes both 
canonical and non-canonical signalling pathways, which 
are responsible for regulation of inflammatory responses 
via several mechanisms. These signalling pathways have 
been investigated because they are essential in the inflam-
matory response and have been confirmed to be linked to 
chronic inflammatory diseases. Therefore, there is a need to 
identify a natural compound that can decrease inflamma-
tory gene expression, such as those associated with NF-kB 
signalling [12]. Several studies noted that these pathways 
have been established to play a role in the expansion, pro-
liferation, suppression of apoptosis, angiogenesis, and inva-
sion of cancer cells. Inflammatory enzymes and mediators, 
CDs, and T-cell activation markers are promising diagnostic 
and treatment hit candidates in various non-communicable 
diseases [13–17]. As a result of its multiple roles in carcino-
genesis, EGF receptor (EGFR) has been viewed as a prom-
ising applicant for anticancer therapy [18, 19]. 

Small non-coding RNAs, known as miRNAs, control 
a variety of biological processes, including carcinogene-
sis, which is dysfunctional in some cancer cells [20–22]. 
Additionally, miRNAs can be efficient negative regulators 
of gene expression and can control the invasion, migra-
tion, and metastasis of cancer cells [23]. MiR-34a can act 
as a potent tumour suppressor because of its capacity to 
control the expression of several target oncogenes impli-
cated in the progression of cancer [24]. Hesperidin may act 
as a regulator of cancer cell migration and invasion, and 
some studies have shown that hesperidin administration 
potentially increases miR-34a expression and decreases 
NF-κB expression [25–27].

Recent studies have focused on how hesperidin can 
alter the characteristics of cancer illnesses by reducing 
pro-inflammatory enzymes and mediators, strengthening 
the antioxidant defence system, and reducing the prolifer-
ation of cancer cells by enhancing the apoptotic process 
in cancer cells [28–30]. Given this context, the purpose 
of the current study is to investigate the effect of hesperi-
din on the apoptosis and proliferation of NSCLC cells A549 
and H460 via targeting the miR 34a/PD-L1/NF-κB signal-
ling pathway. These results may justify the utilisation 
of hesperidin being a therapeutic adjuvant in numerous 
situations to prevent medication resistance.

Material and methods

Chemicals 

Hesperidin (≥ 80% purity) was procured from (Sigma- 
Aldrich; Merck KGaA) (St. Louis, MO, USA). Cisplatin (Cis-

platin,®Mylan, 50 mg/50 ml vial) was bought from Bio-
diagnostics Company (Cairo, Egypt). For the preparation 
of solutions, hesperidin powder was dispersed in DMSO 
(Sigma-Aldrich; Merck KGaA) and afterward diluted to 100, 
300, 1000, 3000, and 10000 µM with cisplatin, and RPMI-
1640 medium was dispersed in sterile PBS to a concentra-
tion of 1 mg/ml, and then the culture medium was diluted 
to 0.01, 0.1, 1, 10, and 100 µM.

Cell culture 

The human lung cancer cell lines A549 and H460 were 
bought from Nawah Scientific Inc. in Mokatam, Cairo, 
Egypt. Cells were kept at 37°C in DMEM media with 10% 
heat-deactivated foetal bovine serum, 100 mg/ml strepto-
mycin, and 100 units/ml penicillin. The environment was 
humidified with 5% (v/v) CO

2
.

Cytotoxicity assay

Cell viability was measured using the cell viability assay 
– the protein dye sulforhodamine B (SRB) test, which is 
based on a dye binding to basic amino acids in cellular pro-
teins. Aliquots of a 100 µl cell suspension (5 × 10–3 cells) 
were cultivated for 24 hours in complete medium in  
96-well plates. To treat the cells, a second aliquot of 100 µl 
of media with various doses of medication was employed. 
After 48 hours of exposure to hesperidin and cisplatin, 
the cells were settled by eliminating the medium and chang-
ing it with 150 µl of 10% trichloroacetic acid (TCA), which 
was then incubated for one hour at 4°C. The cells were 
washed with distilled water 5 times after the TCA solution 
was removed. 70 µl of 0.4% w/v SRB solution was intro-
duced to the mixture in aliquots, and it was then incubated 
for 10 minutes at room temperature and in the dark [31]. 
Plates were washed with 1% acetic acid 3 times pri-
or to being allowed to air dry overnight. 150 µl of TRIS  
(10 mM) was then added to dissolve the protein-bound 
SRB dye. Then, using a BMG LABTECH®- FLUOstar Omega 
microplate reader (Ortenberg, Germany), the absorbance 
was calculated at 540 nm [32]. The cytotoxic activity 
was estimated as the IC

50
, which is the concentration re-

quired to decrease the absorbance of treated cells by 50% 
compared to the untreated cells. For IC

50
 determination, 

a dose-response curve is plotted between the drug con-
centration and percent growth inhibition, as calculated 
here for hesperidin and cisplatin in both lung cancer cell 
lines. IC

50
 values can be determined using IC

50
 calculation 

software. The percentage of cell viability is calculated using 
the following equation:

% viability = mean OD sample/mean OD blank × 100
where OD mean optical density.

Cell cycle assay by flow cytometry

After being exposed to hesperidin and cisplatin at IC
50 

concentration for 48 hours, 814.36 and 944.21 µM for hes-
peridin and 11.18 and 27.6 µM for cisplatin, respectively, 
for A549 and H460 cells, cells (105 cells) were harvested by 
trypsinization and cleaned twice with ice-cold PBS (pH 7.4). 
Suspended cells were fixed in 2 ml of 60% ice-cold eth-
anol for an hour at 4°C. They were then cleaned twice 
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more with PBS (pH 7.4) before being re-immersed in 1 ml 
of PBS with 50 g/ml RNAase A and 10 g/ml propidium io-
dide (PI). After incubation for 20 min in the dark at 37°C, 
cells were analysed by flow cytometry utilising an FL2  
(ex/em, 535/617 nm) signal detector (ACEA Novocyte TM 
flow cytometer, ACEA Biosciences Inc., San Diego, CA, 
USA). For each sample, 12,000 occurrences were gathered. 
Cell cycle distribution was determined using ACEA Novo 
Express TM software (ACEA Biosciences Inc., San Diego, 
CA, USA). Triplicates of experiment were performed.

Wound healing assay 

For the scratch wound experiment, cells were plated 
at a density of 2 × 105 per well on a coated 12-well plate 
and cultivated overnight. The confluent monolayer was 
scratched the following day, and the plate was carefully 
cleaned with PBS. While drug wells were treated with fresh 
media containing the drug, control wells were supplied 
with fresh medium. Between each time point, the plate 
was incubated at 37°C and 5% CO

2
. Cell migration from 

the intact region into the scratched zone could be seen 
under a microscope. The percentage of wound closure was 
measured and compared to the value obtained at zero 
hours using images captured under an inverted micro-
scope at the designated time intervals. Cell migration was 
suggested by the rise in the closure percentage. Using MII, 
the average distance between scratch edges was used to 
compute the wound’s breadth. The wound area was cal-
culated by tracing the region of an image that was free 
of cells using Fiji-Image J software [33]. Triplicates of each 
experiment were performed.

Western blot technique

A549 and H460 cells that had been exposed to hes-
peridin for 72 hours were then treated with ice-cold RIPA 
lysis buffer (Beyotime Institute of Biotechnology) to ex-
tract the total protein. According to the manufacturer’s 
instructions, each sample of the cell pellet was mixed with 
the ReadyPrepTM protein extraction kit (total protein) of-
fered by Bio-Rad Inc. (Catalogue #163-2086). The amount 
of protein in each group was measured using a bicin-
choninic acid assay. Proteins were loaded onto a 10% SDS 
gel, transferred to PVDF membranes, and blocked with 
a 5% skimmed milk solution for 2 hours at room tempera-
ture. Human anti-actin primary antibodies were used to 
probe membranes (1 : 4000; cat. no. ab179467; Abcam) 
and rabbit anti-NF-κB (1 : 1000; ab16502; Abcam) at 4°C. 
Ultimately, the membranes were treated with goat an-
ti-rabbit antibody coupled to horseradish peroxidase for 
a further 3 hours at room temperature (ab6721; Abcam). 
The next step was to visualise the signals with a chemilu-
minescence solution (EMD-Millipore). The experiment was 
performed in triplicate.

Quantitative reverse transcription polymerase 
chain reaction and RNA isolation

To extract the total RNA from A549 and H460 cells, 
a TRIzol reagent kit (Invitrogen; Thermo Fisher Scientific, 
Inc.) was utilised. A Thermo Fisher Scientific, Inc. Nan-

oDrop 3000 spectrophotometer was used to measure 
the concentration of the extracted RNA. Takara Bio, Inc. 
PrimeScript RT reagent kits were used to perform reverse 
transcription on the isolated RNA, producing cDNA and oli-
go primers. For RT, the following methods were employed: 
5 seconds at 85°C and 15 minutes at 38°C. The Power 
SYBR Green PCR Master mix (Takara Bio, Inc.) was utilised 
to measure the quantitative polymerase chain reaction 
(qPCR). The expression of the P53 mRNA levels was nor-
malised using GAPDH as an internal control, PDL-1, EGFR, 
and MiR-34 in the qPCR. The primer sequences for these 
were as follows: P53 forward, 5’ CCTATCCGGTCAGTTGTTG-
GA 3’ and reverse, 5’- TTGCAGAGTGGAGGAAAT 3’; PDL-1 
forward, 5’ GCCAGGGTTTTCCCAGTCACG 3’ and reverse,  
5’ GAGCGGATAACAATTTCACA 3’; EGFR forward, 5’-GCCAG-
GGTTTTCCCAGTCACG-3’ and reverse, 5’ GAGCGGATAA-
CAATTTCACA 3’; MiR-34 forward, 5’ TGGCAGTGTCTTAGCT-
GGTT 3’ and reverse, 5’ GAACATGTCTGCGTATCTC 3’ and 
GAPDH forward, 5’ TGGATTTGGACGCATTGGTC -3’ and re-
verse, 5’ TTTGCACTGGTACGTGTTGAT 3’. Using the 2-ΔΔC-
qtechnique, the relative mRNA expression of P53, PDL-1, 
EGFR, and MiR-34 was determined. The experiment was 
performed in triplicate.

Statistical analysis

Data were analysed and graphing was performed using 
GraphPad Prism, version 7.0 (GraphPad Software, Inc.). 
Statistical results are presented as the mean ± standard 
deviation of 3 independent experiments. Differences 
among several groups were compared using one-way 
ANOVA with Bonferroni test in cases when all groups were 
compared or a post‑hoc Dunnett’s test in cases when 
all groups were compared with the control group. Stu-
dent’s t-test was used to analyse the differences between  
2 groups. P < 0.05 was considered a significant difference. 

Results 

Effect of hesperidin vs. cisplatin on the viability 
of A549 and H460 lung cancer cells as 
determined by sulforhodamine B assay

Based on the mentioned results, hesperidin produced 
cytotoxic effects that changed with time and concentra-
tion in these cells at increasing concentrations of 100–
1000 µM when compared to cisplatin on A549 and H460 
lung cancer cells. When the concentration of hesperidin 
was increased to 300–1000 µM, a sharply increased cy-
totoxic impact was noticed. On the other hand, cell lines 
were exposed to concentrations of cisplatin ranging 
0.01–100 µM for 48 hours tested for viability using an 
SRB colorimetric assay [34]. Hesperidin’s IC

50
 value for 

48 hours was calculated using cytotoxicity plots and cell 
proliferation, and they were determined to be 814.36 µM 
and 944.21 µM for A549 and H460 lung cancer cells, re-
spectively [35] (Figs. 1 A, C). Conversely, IC

50
 values of cis-

platin calculated for 48 hours were estimated for A549 
and H460 lung carcinoma cells to be 11.18 and 27.6 µM, 
respectively (Figs. 1 B, D). Cytotoxic analysis demonstrated 
the toxic and harmful effects of both treatments in both 
lung cancer cell lines. Our outcomes demonstrated that 
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the IC
50

 value of hesperidin showed minor cytotoxicity, in 
comparison with the IC

50
 value of cisplatin, which showed 

a high cytotoxic effect. Nevertheless, our results indicated 
that cisplatin is accompanied by the interaction between 
DNA molecules and cisplatin, resulting in the generation 
of superoxide radicals that influence several pathways in-
cluding upregulation of P53, which was clearly observed in 
our results by PCR assay. These results are confirmed by 
another study, which demonstrated that cisplatin induces 
the death of malignant cells and leads to other organ dam-
age due to ROS generation [36].

Hesperidin and cisplatin individually induced cell 
cycle arrest in A549 and H460 lung cancer cells

To understand the mechanism of cell cycle arrest, the ef-
fects of hesperidin and cisplatin at IC

50
 concentration for  

48 hours (IC
50

; 814.36 and 944.21 µM for hesperidin and  
11.18 and 27.6 µM for cisplatin, respectively, for A549 and 
H460 cells) on the cell cycle were evaluated by flow cytome-
try. According to the study’s findings, which are shown in Fig-
ures 2 and 3, hesperidin caused cell cycle arrest at the Sub-G1 
phase, which corresponds to the non-proliferating 
phase of A549 cells at frequencies of 37.89, 37.96, and 

38.21, respectively (Figs. 2 D–F). On the other hand, cisplatin 
treatment enhanced the cell population in the G2 phase at 
a frequency of 70.39, 73.24, and 72.88, respectively, com-
pared to the control A549 cells in the G2 phase (25.83, 28.15, 
and 20, respectively) (Fig. 2 G–I). Additionally, hesperidin ad-
ministration significantly triggered cell cycle arrest at the G2 
phase in H460 cells (31.65, 33.98, and 32.29 respectively, in 
the G2 phase) (Fig. 3 A–C). The cell replication phase is in-
dicated by G2 phase. It is anticipated that substances that 
interfere with microtubular spindles will greatly boost this 
cell population [37]. As opposed to this, cisplatin caused 
cell cycle arrest in H460 at frequencies of (40.37, 40.71, 
and 38.42, respectively) (Fig. 3 G–I). Thus, hesperidin and 
cisplatin treatments boosted H460 and A549 cell death by 
prompting apoptosis and cell cycle arrest. 

Hesperidin and cisplatin individually lead  
to inhibition of cell migration in A549 and H460 
lung cancer cells

In this study, wound-healing assay was used to assess 
how hesperidin and cisplatin at IC

50
 concentration for  

48 hours (IC
50

; 814.36 and 944.21 µM for hesperidin and 
11.18 and 27.6 µM for cisplatin for A549 and H460 cells, 

Fig. 1. Effect of hesperidin vs. cisplatin on the viability of A549 and H460 cells as determined by a sulforhodamine B assay at 48 hours.  
Effects of various concentrations of hesperidin on the viability of H460 cells (A), effects of various concentrations of cisplatin on the viability 
of H460 cells (B), effects of various concentrations of hesperidin on the viability of A549 cells (C), effects of various concentrations of cispla-
tin on the viability of A549 cells (D). Hesperidin’s IC

50
 values for 48 hours were calculated using cytotoxicity plots and cell proliferation, and 

they were determined to be 814.36 µM and 944.21 µM, respectively, for A549 and H460 lung cancer cells [35] 

As opposed to Figures 1 A, C, IC
50

 values of cisplatin calculated for 48 hours were estimated for A549 and H460 lung carcinoma cells to be 11.18 and 27.6 μM, respec‑
tively – Figures 1 B, D. Cytotoxic analysis demonstrated the toxic and harmful effects of both treatments in both lung cancer cell lines. As our outcomes demonstrat‑
ed, the IC

50
 value of hesperidin showed minor cytotoxicity, in difference with the IC

50
 value of cisplatin, which showed a high cytotoxic effect.
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Fig. 2. Hesperidin and cisplatin individually induce cell cycle arrest in A549 cell lines. Cell cycle analysis for control cells (A–C), cell cycle 
analysis for hesperidin-treated A549 cells; hesperidin induces cell cycle arrest in sub-G1 phase (D–F), cell cycle analysis for cisplatin-treated 
A549cells; cisplatin induces cell cycle arrest in G2 phase (G–I)

The experiments were performed in triplicate. Hesperidin caused cell cycle arrest at the sub‑G1 phase, which corresponds to the non‑proliferating phase of A549 cells 
at frequencies of 37.89, 37.96, and 38.21, respectively (Fig. 2 D–F). Cisplatin cure enhanced the cell population in the G2 phase at a frequency of 70.39, 73.24, and 
72.88, respectively, compared to the control A549 cells in the G2 phase (25.83, 28.15, and 20, respectively) (Fig. 2 G–I). As a result, hesperidin and cisplatin treatments 
boosted A549 cell death by prompting cell cycle arrest.
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respectively) affected the migration of A549 and H460 
cells. Images of the number of cells that migrated into 
the scratched area were taken after treatment with hes-
peridin and cisplatin, the number of cells was used to 
estimate the migration rate. Additionally, wound width, 
wound closure, and migration rate were used to calculate 
the results of wound healing. In Figures 4 and 5 the results 
showed that hesperidin reduced cell migration in both cell 
lines in a time-dependent way. Hesperidin treatment sig-

nificantly reduced the rate of cell migration in A549 and 
H460 cells after 48 hours from 0.015 ±0.0037 in control cells 
to 0.007 ±0.0041 in hesperidin treated H460 cells (Fig. 5) 
and from 0.04 ±0.009 in control cells to 0.02 ±0.001 in hes-
peridin-treated A549 cells (Fig. 4). The control group did not 
exhibit evidence of cell migration inhibition. Meanwhile, 
the treatment with cisplatin caused a significant reduc-
tion in the rate of migration of cells in both cell lines after  
48 hours (Figs. 4, 5). Subsequently, when the A549 cells 
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were treated with hesperidin (IC
50

), 95% wound closure was 
detected, and at 72 hours the wound was almost totally 
closed (Fig. 4). Interestingly, in hesperidin-treated H460 cells, 
75% wound closure was observed at 72 hours (Fig. 5), while 
cisplatin-treated H460 and A549 cells showed 85% and 73% 
wound closure at 72 hours respectively (Figs. 4, 5). Moreover, 
A549 and H460 cells both treated with hesperidin and cispla-
tin (IC

50
) showed significantly higher wound with compared to 

untreated cells (Figs. 6, 7). The results indicated the anti-mi-

gratory potential of hesperidin and cisplatin against H460 
and A549 cells.

Hesperidin and cisplatin individually decreased 
nuclear factor κB expression in A549 and H460 
lung cancer cells

To investigate the effect of hesperidin and cisplatin on NF-
κB expression, NF-κB expression was detected by western 
blot after drug administration, as illustrated in Figure 8 
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– A549 and H460 lung cancer cells showed a remarkable 
increase in NF-κB expression. However, the administration 
of hesperidin and cisplatin to A549 and H460 lung cancer 
cells developed a notable reduction in the protein expres-
sion of NF-κB, with the lowest values detected in the hes-
peridin-treated H460 lung cancer cells, thereby enhancing 
the accretion of medicines in cancer cells and promoting 
the toxic influences on tumour cells.

Hesperidin and cisplatin individually  
up-regulated MiR-34a and P53 while down-
regulating epidermal growth factor receptor 
and programmed cell death ligand-1mRNA 
expressions in the neoplastic cells in A549  
and H460 cells

To prove the mechanism by which hesperidin boosts 
the apoptosis process in A549 and H460 cells via targeting 
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the miR-34a/PD-L1 signalling pathway, MRNA expressions 
of miR-34a, PD-L1, P53, and EGFR genes were assayed us-
ing reverse transcription PCR (RT-PCR). The polymerase 
chain reaction results of the negative regulator for inva-
sion and metastasis; miR-34a in hesperidin-treated A549 
revealed a significant expression of miR-34a in compari-
son with control cells, while cisplatin showed a lower ex-
pression of miR-34a in comparison with the hesperidin- 
treated H460 cells in addition to a significant boost in P53 
expression in both hesperidin-treated A549 and H460 cells 
compared to cisplatin-treated and untreated cells, sug-
gesting that hesperidin exerts a strong apoptotic effect via 
activation of tumour suppressor factors – P53 and miR-34a 
(Fig. 9). Additionally, the hesperidin-treated A549 present-
ed a significant reduction of EGFR expression in A549 and 
a weaker expression of EGFR in H460 compared with H460 
cells treated with cisplatin. Furthermore, the hesperidin- 
treated cells showed a significant down-regulation 
of the expression of the immune checkpoint inhibitor PDL-1 
in both A549 and H460 cells in comparison with that in 
cisplatin-treated and untreated cells (Fig. 9). The find-
ings mentioned above showed that hesperidin promoted 
apoptosis via up-regulation of P53 and miR-34a, thereby 
increasing the therapeutic value of hesperidin in the treat-
ment of lung cancer cells. 

Discussion

Today, cancer is the second most frequent reason for 
death globally. Cisplatin is the first-line therapy utilised for 
patients with lung cancer, despite recent advancements 
in new cancer treatment tactics [38]. Despite being ef-
fective against a variety of cancers, cisplatin has several 
limitations because of problems and unfavourable side  

effects. Resistance often occurs in cisplatin-treated pa-
tients, which poses a significant issue in the therapeu-
tic environment [39]. The management of the cytotoxic 
side effects of chemotherapy medicines is essential to 
overcome these difficulties. Recently, it has been discov-
ered that several natural compounds made from herbs 
and plant extracts have chemo-protective characteristics 
against the development of carcinogenesis [40]. 

Hesperidin is a member of the flavone family, which de-
rives its members from citrus fruits. Bioflavonoids found 
in citrus seeds have been linked to apoptosis activation in 
human cancer cells earlier in in vitro experiments [41]. Re-
cently, hesperidin has become a topic of discussion due to 
its effects on cancer, particularly its anticancer properties, 
which have been investigated in prior studies [42, 43]. Hes-
peridin regulates the production of proteins necessary for 
cell cycle progression that leads to mitochondrial apopto-
sis in lung cancer A549 cells, according to a prior study [44]. 
Hesperidin may be a potential cure for NSCLC based on 
these earlier findings [45]. The current investigation used 
cytotoxicity test, wound healing assay, and flow cytometer 
analysis to compare the antitumour effectiveness of hes-
peridin vs. cisplatin against NSCLC and to assess how both 
treatments affect cell death and proliferation.

Hesperidin’s cytotoxicity effects on lung cancer cells 
were evaluated in the current study using an SRB prolifera-
tion assay on A549 and H460 lung cancer cells. Our results 
demonstrated that hesperidin had no toxic effects on lung 
cells at a concentration of 100 µM in A549 and H460 cells; 
these effects were markedly amplified when the hesperi-
din concentration was raised to 1000 µM. In cells treated 
with cisplatin, the toxic effect began at 10 µM, demon-
strating its impact on the feasibility of lung cancer cells. 
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Fig. 3. Hesperidin and cisplatin individually induce cell cycle arrest in H460 cell lines. Cell cycle analysis for control cells (A–C), cell cycle 
analysis for hesperidin-treated H460 cell; hesperidin induces cell cycle arrest in G2 phase (D–F), cell cycle analysis for cisplatin-treated H460 
cells (G–I); cisplatin induces cell cycle arrest in G1 phase 

The experiments were performed in triplicate. Hesperidin administration significantly triggered cell cycle arrest at the G2 phase in H460 cells (31.65, 33.98, and 32.29, 
respectively, in the G2 phase) compared to untreated cells, while cisplatin caused cell cycle arrest in H460 at frequencies of 40.37, 40.71, and 38.42, respectively. As 
a result, hesperidin and cisplatin treatments boosted H460 cell death by prompting apoptosis and cell cycle arrest. 
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However, the powerful antitumour effectiveness of cis-
platin is accompanied by multiple significant side effects 
and the development of chemo-resistance in cancer cells. 
Nephrotoxicity is the main side effect of cisplatin therapy, 
which develops because of the drug’s impairment of renal 
function and kidney tubular obstruction [46].

It is widely known that various chemotherapy medi-
cines disrupt the cell cycle in a different manner [47]. Re-
cent research revealed that the cell cycle selectively halted 

phase or phase transitions including G0/G1 or G2/M by 
a drug-induced apoptosis mechanism [48]. Cell cycle dis-
tribution may therefore be important for creating possible 
chemotherapeutic medicines. A study by Kabała-Dzik et al. 
showed that hesperidin at concentrations of 50–100 µM 
for 24–48 hours can increase cell population in the G0/G1 
phase and the G2/M phase in MCF-7 cells. At a higher 
concentration of 100 µM, hesperidin caused induction 
of MCF-7 cells accumulation in the G0/G1 phase, which 
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reflects a G0/G1 phase arrest [49]. Our results were con-
sistent with those reported by another study [50], which 
demonstrated that hesperidin significantly decreased pro-
liferation and began cell cycle arrest in lung cancer cells 
at the sub-G1 phase [51]. Hesperidin showed high peak 
concentration at the sub-G1 phase in A549 and G2 phase 
in H460 cells. Additionally, Aggarwal et al. [52] revealed 

that in addition to its anti-inflammatory and antioxidant 
properties, hesperidin’s principal mechanisms of action 
against cancer cells involve stoppage of the cell cycle and 
activation of apoptosis. 

Additionally, Western blot and RT-qPCR analysis were ap-
plied to determine how hesperidin affected the miR-34a/
PD-L1/EGFR signalling pathway. The co-inhibitory check-
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point signalling that regulates T-cell activation is greatly 
prompted by the engagement of PD-1, which is encoded 
by the PDCD1 gene and expressed on T-cells and PD-L1, 
which is encoded by the CD274 gene [53]. Numerous cancer 
forms produce high PD-L1 expression levels and use PD-L1/
PD-1 signalling to disrupt T-cell immunity. Multiple studies 
found that inhibiting this route may be the gold standard 
treatment for the development of novel immune checkpoint 
blockade (ICB) because it has demonstrated antitumour 

effects in patients with advanced malignancies [54]. Re-
garding the ameliorative potency of hesperidin, our most 
recent research found that hesperidin blocked the NF-κB 
signalling pathway, which in turn decreased the expres-
sion of PDL-1 and elevated the expression of miR-34a in 
tumour cells, boosting the tumour suppressive effects on 
cancer cells. Hesperidin may be able to repair the negative 
feedback between miR-34a and inflammatory cytokines, 
as confirmed by the findings of other investigations [55]. 
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Fig. 4. Effect of cisplatin and hesperidin on the migration of A549 cells represented by migration rate (A) wound closure as determined  
by a wound-healing assay (B)

The experiments were performed in triplicate at 24, 48, and 72 hours. The results are displayed as mean ± standard deviation. The results presented are means  
of 2 independent experiments. ap < 0.01 vs. control, bp < 0.01 vs. cisplatin‑treated cells. Hesperidin treatment significantly reduced the rate of cell migration in 
A549 cells after 48 hours from 0.04 ±0.009 in control cells to 0.02 ±0.001 in hesperidin‑treated A549 cells. When the A549 cells were treated with hesperidin (IC

50
), 

95% wound closure was detected at 72 hours and the wound was almost totally closed. While cisplatin‑treated A549 cells showed 73% wound closure at 72 hours.
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Interestingly, another study demonstrated that miR-34a 
stimulates the signalling of the anti-inflammatory pathway, 
concurring with the study that showed that miR-34a is in-
volved in regulating the production of proteins that reduce 
inflammation [56]. 

According to another study, hesperidin administration 
decreased PD-L1 expression in cancer cells, which enhanced 
immunosurveillance and decreased PDL-1 non-immune 
checkpoint activity, which attenuated the DNA damage 
response [57]. Our findings are in line with the study’s re-
sults of a prior study by Donia et al. [58], who hypothe-

sised that hesperidin’s capability to halt tumour growth 
by inhibiting the expression of NF-κB may confer antican-
cer capabilities. However, recent research has shown that 
dysregulation of miRNA expression in many cancer types 
increases immune evasion and tumour spread [59]. Fur-
thermore, lung cancer dysregulated miR-34a, which has 
a negative correlation with PD-L1 expression. Our inves-
tigation showed that p53 was inhibited when the PDL-1 
signalling pathway was active in tumour cells, affecting 
the proliferation activity by losing the tumour suppressor 
ability of p53 [60], which is consistent with our findings.
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Fig. 5. Effect of cisplatin and hesperidin on the migration of H460 cells represented by migration rate (A) and wound closure as determined 
by a wound-healing assay (B)

The experiments were performed in triplicate at 24, 48, and 72 hours. The results are displayed as mean ± standard deviation. The results presented are means 
of 2 independent experiments. ap < 0.01 vs. control. Hesperidin treatment significantly reduced the rate of cell migration in H460 cells after 48 hours from 0.015 
±0.0037 in control cells to 0.007 ±0.0041 in hesperidin‑treated H460 cells. The control group did not exhibit any evidence of cell migration inhibition. Meanwhile, 
the treatment with cisplatin caused a significant reduction in the rate of migration of cells in H460 cells after 48 hours. Interestingly, in hesperidin‑treated H460 
cells, 75% wound closure was observed at 72 hours, while cisplatin‑treated H460 cells showed 73% wound closure at 72 hours.
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Fig. 6. Wound healing assay images for A549 cells at 72 hours. The A549 cells treated with hesperidin and cisplatin (IC
50

) showed signif-
icant higher wound width compared to untreated cells. Control cells (A), hesperidin-treated A549 cells (B), cisplatin-treated A549 cells,   
the experiments were performed in triplicate (C), statistical analysis of the wound width results (D)

The results presented are means of 2 independent experiments. ap < 0.01 vs. control. A549 cells both treated with hesperidin and cisplatin (IC
50

) showed significantly 
higher wound width compared to untreated cells. The results indicated the anti‑migratory potential of hesperidin and cisplatin against A549 lung cancer cell lines cells.
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Fig. 7. Wound healing assay images for H460 cells at 72 hours. The H460 cells treated with hesperidin and cisplatin (IC
50

) showed significant 
higher wound width compared to untreated cells. Control cells (A), hesperidin-treated H460 cells (B), cisplatin-treated H460 cells, the exper-
iments were performed in triplicate (C), statistical analysis of the wound width results (D)

The results presented are means of 2 independent experiments. ap < 0.01 vs. control. H460 cells showed significantly higher wound width compared to untreated cells 
when treated with hesperidin and cisplatin (IC

50
). The results indicated the anti‑migratory potential of hesperidin and cisplatin against H460 lung cancer cell lines
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Moreover, miRNA expression appears to be one of the 
processes causing cancer immune evasion, deregulation 
of p53 function in cancer cells is one such mechanism 
that is down-regulated, which is remarkable because p53 
up-regulates miR-34a [61]. According to our findings, in 
both cancer cell lines p53 expression levels were consider-
ably higher in cells treated with hesperidin in comparison 
with those treated with cisplatin. Furthermore, when com-
pared to cisplatin therapy, hesperidin administration led to 
a much lower amount of PDL-1 expression, as demonstrated 
by our findings. Hesperidin treatment significantly reduced 
the accumulation of EGFR, whereas cisplatin treatment in-
creased EGFR expression. This finding suggests that hes-
peridin gradually restored the inhibitory effect of miR-34a 
on inflammation and proliferation activity. 

Prior studies suggest that the anticancer properties 
of cisplatin may be connected with the interaction of DNA 
molecules with cisplatin, which results in the production 
of free radicals that kill malignant cells [62]. However, 
the powerful antitumour effect of cisplatin is frequently 

accompanied by the emergence of tumour cell chemore-
sistance and several dose-limiting adverse effects [63]. In 
brief, the current findings regarding the ameliorative and 
cytoprotective potency of hesperidin showed that the ad-
ministration of hesperidin alone can cause a significant 
decrease in tumour growth with cytoprotective properties 
in lung cancer cells, which was in agreement with another 
study that confirmed that these results are important 
signs of the powerful anticancer activities of hesperidin 
vs. cisplatin treatment in cancer cells [64]. However, some 
limitations of our research should be mentioned: it is also 
important to detect the miR 34a/PD-L1/NF-κB expression 
in other lung cancer different cell lines and to verify the ap-
plicability of the anti-lung cancer effects of hesperidin. 

Conclusions 

The current study showed that hesperidin administra-
tion may reduce lung cancer by encouraging apoptosis and 
reducing the growth of NSCLC cells via the miR-34a/PDL-1/
NF-κB pathway. The strengths of this study lie in present-
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Fig. 9. Hesperidin and cisplatin individually enhance the apoptosis 
process in H460 and A549

Polymerase chain reaction results of the negative regulator for invasion and me‑
tastasis; miR‑34a in hesperidin‑treated A549 revealed a significant expression 
of miR‑34a compared to the  control cells, while cisplatin showed a  lower ex‑
pression of miR‑34a compared to the c‑treated H460 cells. Representative chart 
showed a significant increase in P53 expression in both hesperidin‑treated A549 
and H460 cells compared to cisplatin‑treated cells, suggesting that hesperidin 
exerts a strong apoptotic effect via activation of tumour suppressor factors; P53. 
Hesperidin‑treated A549 showed a  significant decrease of  epidermal growth 
factor receptor (EGFR) expression in A549 and a  weaker expression of  EGFR 
in H460 compared with cells treated with cisplatin. Hesperidin‑treated cells 
showed a significant down‑regulation of the expression of the immune check‑
point inhibitor PDL‑1 in both A549 and H460 cells compared with that in cispla‑
tin‑treated and control cells. The results presented are means of 2 independent 
experiments. The experiment was performed in triplicate. ap < 0.01 vs. control, 
bp < 0.01 vs. cisplatin‑treated cells.
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ing hesperidin as a successful method and a secure cancer 
treatment that reduces the cytotoxicity impact linked to 
cisplatin and other chemotherapeutic medications. Hes-
peridin may present a new method for the treatment and 
prevention of lung cancer by avoiding some side effects 
of traditional cisplatin. However, the antitumour effect 
and mechanism of hesperidin require further study. With 
the research and development of hesperidin analogues 
and further study of their antitumour mechanisms, hes-
peridin may become a promising candidate compound for 
the prevention and treatment of tumours.

Hesperidin may be utilised to treat human lung can-
cer as an adjuvant or chemotherapy drug, even if its an-
titumour effects on lung cancer still need to be proven. 
The underlying molecular mechanisms’ in vivo pathways 
need more research. This research lies in the need to fur-
ther apply the study results to the clinical settings in future 
studies.
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