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Introduction

Poly (ADP-ribose) polymerase (PARP) is a nuclear enzyme important for
the detection of DNA strand breaks caused by genotoxic agents such as
reactive oxygen species (ROS), ionizing radiation and alkylating agents or
those caused by enzymatic incision of DNA-base lesions [1]. In testicular
germ cells, PARP has a particularly well-researched role in base excision
repair (BER), which is one of the primary repair mechanisms to resolve
DNA lesions caused by endogenous and exogenous processes [2-6].
However, a similar role for PARP in human ejaculated spermatozoa is still
being investigated and remains to be controversial [7-10].

Male germ cells are exposed to a wide variety of endogenous and
exogenous genotoxic agents [11, 12]. Endogenous agents include reactive
oxygen and nitrogen species generated during the metabolic activities of cells
[13, 14]. Exogenous agents include various environmental factors that can
inflict damage to genomic DNA. These genotoxic agents can introduce DNA
lesions in the form of DNA single-strand breaks, double-strand breaks, base
damage, inter- and intra-stand cross links and DNA-protein cross-links. 
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A b s t r a c t

Poly (ADP-ribose) polymerase (PARP) is an abundant nuclear enzyme involved
in DNA repair and transcriptional regulation. It is now recognized as a key
regulator of cell survival and cell death in response to noxious stimuli. Poly
(ADP-ribose) polymerase becomes activated in response to oxidative DNA
damage and depletes cellular energy pools, leading to cellular dysfunction in
various tissues. Poly (ADP-ribose) polymerase over-activation depletes its
substrate nicontinamide adenine dinucleotide, slowing the rate of glycolysis,
electron transport and adenosine triphosphate formation. Eventually this leads
to functional impairment or cell death, as well as upregulation of various
pro-inflammatory pathways. Therefore, novel antioxidants and PARP inhibitors
have entered clinical development as experimental therapies for various diseases
and possibly defective spermatogenesis. This review focuses on the data
available on the pathophysiological relevance of the PARP in various stages
of spermatogenesis ranging from testicular to ejaculated spermatozoa.
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To counteract this wide spectrum of DNA lesions,
eukaryotic cells possess efficient DNA repair
pathways. In addition to BER, these include
nucleotide excision repair (NER), mismatch repair
(MMR), non-homologous end-joining (NHEJ), and
homologous recombination (HR). These five major
pathways operate alone or in combination to
remove the wide array of DNA lesions and restore
genomic stability. Some proteins like PARP
participate in multiple DNA repair pathways [15-17].

Not only does PARP have a well-defined role in
DNA repair, it can also serve as biochemical marker
of caspase-dependent apoptosis [15, 21]. During
apoptosis, numerous DNA strand breaks lead to
PARP activation. This may be an attempt by the
dying cell to repair the DNA damage caused by
nuclease activation [18]. However, this attempt to
repair damage proves futile as PARP is cleaved by
caspase-3 into a catalytic fragment of 89 kDa and
DNA binding unit of 24 kDa [19, 20].

Recently, there has been growing interest in the
role of PARP in the management malignancy
including the use of PARP inhibition as an adjuvant
therapy with chemotherapeutic drugs [22]. As our
focus lies primarily in male infertility, we highlight
in this review the possibilities of PARP involvement
in male infertility as well as the possible role of
PARP modulation to control DNA damage in male
germ cells. This may reveal a new therapeutic
option for the correction and repair of sperm DNA
damage.

Structural and functional classifications 
of poly (ADP-ribose) polymerase

The PARP family contains 18 homologues with
a conserved catalytic domain made up of 50 amino
acids that serve as the “PARP signature” [23]. This
is the site where PARP chains are initiated and
elongated and where branching of the chains can
occur [24]. Besides this catalytic domain, other PARP
family members may have other domains, including
DNA binding domains, macrodomains, BRCT (BRCA1
C terminus) domain found in proteins responding
to DNA damage, ankyrin repeats, and WWE
domains found in proteins associated with
ubiquitination. All of these special types of domains
contribute to the unique functions of each family
member [23, 25].

Poly (ADP-ribose) polymerase family members
can be divided into several subcategories based on
each protein’s established functional domains and
precise functions. The first category consists of the
DNA-dependent PARP (PARP-1 and PARP-2), which
are activated by DNA strand breaks. The second
group is the tankyrases (tankyrase-1 and tankyrase-2),
which serve diverse functions such as telomere
regulation and mitotic segregation. The third group
is the CCCH-type PARP (PARP-12, PARP-13, and

TCDD-inducible PARP), which contains special
CCCH-type zinc fingers. Lastly, the fourth group
(PARP-9, PARP-14, and PARP-15) consists of macro-
PARP that have one to three macro-domains
connected to a PARP domain. PARP-8, PARP-11,
PARP-16, and PARP-6 do not have sufficient known
domains functions to be assigned a role [26].

A recent classification system by Hassa and
Hottiger compared the catalytic domain sequences
of these enzymes. They divided the PARP family into
three separate groups: group 1 consists of PARP-1,
PARP-1b (short PARP-1, PARP-2, and PARP-3).
Group 2 consists of only PARP-4, and group 3
consists of tankyrase-1, tankyrase-2a, and its
isoform tankyrase-2b (also known as PARP-5 and
PARP-6a/b) [24]. The various PARP enzymes also
can have different subcellular localization patterns.
PARP-1 and PARP-2 are considered nuclear enzymes
and are found in the nucleus of cells. In contrast,
the tankyrases and PARP-3 are found in both the
nucleus and cytoplasm [27].

Perhaps the best studied member of the PARP
family is PARP-1, a 113 kD enzyme encoded by the
ADPRT gene in humans located on chromosome 1
[28, 29]. The protein structure of PARP-1 is very well
characterized. It is made up of four functional
domains, including a DNA binding domain
consisting of structures known as zinc fingers that
can bind to DNA breaks. A second domain contains
the nuclear localization signal (NLS), which ensures
PARP-1 is found in the nucleus, and it is also a site
of cleavage by caspase-3. PARP-1 also includes an
automodification domain and a domain that holds
the enzyme’s catalytic activity [23]. 

Modulation of poly (ADP-ribose) polymerase
activity

Modulation of PARP activity is important for
exploring this enzyme’s therapeutic options. Several
types of molecules have been identified as
activators of PARP activity, including histones, the
common target of PARP activity. Although histones
are modified by PARP-1, histones H1 and H3 actually
can activate PARP-1. An important enzyme involved
in regulating histone structure, SIRT-1 (a histone
deacetylase) enzyme also is involved in regulating
PARP-1 activity. In the absence of SIRT-1, PARP is not
regulated, and cell death regulated by apoptosis-
inducing factor (AIF) occurs [49]. Magnesium ions,
calcium ions, and polyamines are allosteric
activators of the auto-(poly-ADP-ribosyl)ation
activity of these enzymes. It should be noted that
calcium ions also play an important role in oxidative
stress pathophysiology [50]. 

Poly (ADP-ribose) polymerase has an extensive
list of inhibitors that are used extensively to study
PARP activity. Purines such as hypoxanthine and
inosine are endogenous inhibitors [51]. Interestingly,
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caffeine derivatives can inhibit PARP-1 activity as
well [52-55], in addition tetracycline derivative also
have the ability to inhibit PARP-1 activity [56].
Phosphorylation of PARP is a more complicated type
of modulation. It was found that phosphorylation
of PARP-1 by ERK 1 and 2 (extracellular signal-
regulated kinases) was important for regulating
neuronal cell death [57]. Poly (ADP-ribose)
polymerase also can be phosphorylated by DNA-PK
(DNA-dependent protein kinase) a major protein
that takes part in double-stranded break repair.
DNA-PK phosphorylates PARP and suppresses PARP
activity [58]. 

Poly (ADP-ribose) polymerase in the context 
of male reproduction

Poly (ADP-ribose) polymerase plays a crucial role
in maintaining the genomic integrity in a variety of
cell types. Perhaps nowhere is this genomic
integrity more important than in germ cells. Cases
of male infertility are associated with abnormal
sperm chromatin and DNA structure. The problems
that arise in genomic integrity of sperm come from
a variety of sources, including spermatogenesis
defects, abortive apoptosis, problems with
spermatid maturation, and oxidative stress [76].
Problems in spermatogenesis could include double-
stranded breaks that are not resolved after crossing
over during meiosis I [76]. 

The role of PARP in male fertility is not as well
defined as its role in cellular processes. However,
there is enough evidence to suggest that such a role
exists due to the documented presence of PARP in
the testis, during spermatogenesis, and just
recently in ejaculated spermatozoa [72].
Furthermore, PARP as an important DNA repair
enzyme could maintain the sperm genomic
integrity. Similarly, the role of PARP in cell death
pathways may have important implications for the
elimination of abnormal spermatozoa, especially
during the processes of spermatogenesis.

GGeerrmm  cceellll  aappooppttoossiiss

Apoptosis is a normal component of mammalian
spermatogenesis. It is orchestrated spontaneously
during the entirety of spermatogenesis to produce
mature spermatozoa and to eliminate any
abnormal spermatozoa. In fact, a very large number
of spermatozoa die during spermatogenesis. This
may be due to the ability of the Sertoli cells to
maintain only a limited number of germ cells so
excess cells must be eliminated. Apoptosis also may
function to destroy cells that do not make it past
certain cellular checkpoints [59]. In a recent study
by Codelia et al., the cell death pathway involved
in pubertal rat spermatogenesis was identified as
the extrinsic pathway of cell death involving the
Fas-FasL system. The study also showed signi-

ficantly less cleaved PARP and a reduction in the
number of apoptotic germ cells when using
a caspase-8 inhibitor and a pan-caspase inhibitor
[61]. Thus, PARP cleavage may play a key role in the
cellular death pathways of spermatogenesis.

The significant presence of PARP in human
spermatocytes during maturation arrest was
suggested to represent the greater amount of DNA
strand breaks occurring during spermatogenesis
impairment [70]. Poly (ADP-ribose) polymerase-2
also has been implicated in abnormal sperma-
togenesis. In a recent study by Dantzer et al., an
increased incidence of apoptosis was found in the
testis of PARP-2 null mice, specifically in the
spermatocyte and spermatid layers. However, the
layers containing spermatogonia and preleptotene
spermatocytes did not show any markers for
apoptosis. Chromosome segregation was
abnormal during metaphase I, and spindle
assembly was also abnormal in these PARP-2-
deficient mice. Thus, the decrease in fertility seen
in these mice could be related to defective
meiosis I and spermiogenesis [71]. 

PPoollyy  ((AADDPP--rriibboossee))  ppoollyymmeerraassee  iinn  eejjaaccuullaatteedd
ssppeerrmmaattoozzooaa

The quest to detect PARP in ejaculated
spermatozoa has demonstrated success only
recently. Initially, the presence of PARP-1 in human
ejaculated sperm samples when analyzing semen
for apoptotic markers was not detected (Taylor,
Weng et al. 2004). However, in a recent study by
Jha et al., several PARP isoforms were detected in
ejaculated spermatozoa, including PARP-1, PARP-2,
and PARP-9. Immunolocalization patterns showed
that PARP was found near the acrosomal regions in
sperm heads. Furthermore, a direct correlation was
seen between sperm maturity and the presence of
PARP. An increased presence of PARP-1, PARP-2, and
PARP-9 was seen in mature sperm samples when
compared with immature sperm samples of fertile
and infertile men. In addition, a possible relationship
between PARP and male infertility was also
demonstrated. Poly (ADP-ribose) polymerase activity
was then modulated to determine its role in
responding to oxidative and chemical damage in
sperm. In the presence of the PARP inhibitor
3-aminobenzamide, chemical- and oxidative stress-
induced apoptosis increased by nearly twofold. This
recent finding suggested that PARP could play an
important protective role for spermatozoa
responding to oxidative and chemical damage [72].

The research presented by our group was the
first in showing the presence of cleaved PARP in
ejaculated spermatozoa. The presence of cleaved
PARP was similar in mature and immature sperm
samples following exposure to oxidative stress and
chemical damage. Modulating PARP activity was
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also shown to alter the incidence of cell death.
When the same sperm samples were exposed to
PARP inhibitors after chemical and oxidative stress,
apoptosis decreased [75]. 

PPoollyy  ((AADDPP--rriibboossee))  ppoollyymmeerraassee  aanndd  ooxxiiddaattiivvee
ssttrreessss

Oxidative stress can cause DNA damage,
inflammation, and modification of proteins. Poly
(ADP-ribose) polymerase responds to all three of
these changes that can occur in the cell as a result
of oxidative damage. However, there is a great deal
of variability in PARP activation as a result of this
type of stress; the cell’s metabolic stage or its
microenvironment could affect the activity of PARP
[38]. In response to DNA damage caused by ROS,
PARP-1 recruits the DNA repair protein XRCC1 to
damage sites [40]. DNA is not the only structure
modified by ROS; histones could be damaged as
well. Ullrich et al. showed that PARP can activate
the 20S proteosome involved in breaking down
oxidatively damaged histones. Also, in response to
oxidative stress caused by exposure of histones to
hydrogen peroxide, PARP, PAR, and the nuclear
proteosome all bind together [41]. This could be
important for protecting DNA against oxidative
damage because it has been found that
a condensed chromatin structure may prevent DNA
strand breaks induced by hydroxyl radicals [42]. 

PPoollyy  ((AADDPP--rriibboossee))  ppoollyymmeerraassee  aanndd  aaggiinngg

Two main aspects of PARP activity may influence
aging: PARP’s regulation of immune responses
through its interaction with NF-κB and PARP’s
central role in maintaining genomic stability through
DNA repair, telomere maintenance, spindle stability,
and cell death [43]. Both PARP-1 and PARP-2 are
involved in telomere functioning. PARP-1 and PARP-2
bind to TRFII (telomere repeat binding factor II) and
modify it, affecting its ability to bind to telomere
regions [44, 45]. Poly (ADP-ribose) polymerase-1 also
is found at telomere regions of DNA damaged by
genotoxic agents, and it may play a role in
preventing damage to genomic instability [45].
Tankyrases also are involved in telomere regulation.
Tankyrase can bind to TRF1, a telomeric factor that
shortens telomere length, and TRF-1 is in turn
modified by ADP-ribosylation, thus making it more
difficult for TRF-1 to bind to telomeric regions of
DNA in vitro [46]. It has even been shown that mice
lacking PARP exhibited telomere shortening,
a symptom of ageing [47]. 

Chromosomal instability increases with an
organism’s age. Poly (ADP-ribose) polymerase is
essential for chromosomal stability through its role
in DNA repair. Poly (ADP-ribose) polymerase-1-
deficient mice created by Simbulan-Rosenthal et
al. showed a higher incidence of chromosomal

aberrations and polyploidy. Reintroduction of PARP
in the form of cDNA allowed for restoration of
chromosomal integrity [48].

Potential therapeutic options 
for poly (ADP-ribose) polymerase 

The key role of PARP in cell death has made it
an attractive candidate for modulation in cancer
therapies. Poly (ADP-ribose) polymerase inhibition
is currently being explored as an adjunct to
chemotherapy. It is based on the hypothesis that
inactivating PARP will render malignant cells
exposed to chemotherapy unable to repair DNA
damage resulting from therapy, leading to their
death. Non-malignant cells will not be susceptible
to cell death at these low doses of chemotherapy.
Thus PARP-inhibitors are way of sensitizing
cancerous cells to chemotherapy [82]. Inactivating
PARP through cleavage is also being explored. In
a recent study by Zhang et al., PARP cleavage
through activation of caspases induced cytotoxicity
in human leukemia cells [83].

Whether PARP can function in therapy for male
infertility remains to be seen. Our group has
previously reported that PARP inhibition may protect
against chemically induced injury of ejaculated
spermatozoa in vitro, but it could not protect
against damage induced by oxidative stress [75].
PARP inhibition may have a potential role in
testicular cancer as well as cancer that may have
spread to the testes. Inflammatory processes as
result of infections could also be another area to
explore in terms of PARP and male fertility. 

Future directions

Poly (ADP-ribose) polymerase homologues seem
to have diverse roles in spermatogenesis and even
in ejaculated sperm. Their expression has showed
a correlation with spermatozoa maturity and fertility
potential. The presence of cleaved PARP in
ejaculated spermatozoa confirms this hypothesis.
The available preliminary data show that PARP
inhibition may protect against chemically induced
damage in sperm. This will pave the way for future
studies to confirm these findings and to examine
the role of PARP in other types of induced sperm
damage. 

Poly (ADP-ribose) polymerase modulation may
also create new therapeutic options for infertile
patients, especially those suffering from sperm DNA
damage, oxidative stress-induced sperm DNA
damage, or perhaps even idiopathic male infertility.
Poly (ADP-ribose) polymerase inhibition may be
used as an in vitro treatment for inducing death in
spermatozoa that carry damaged DNA. Cleaved
PARP could serve as an apoptotic marker that may
prove useful for identifying healthy spermatozoa.
Not only this, but the therapeutic potential of PARP
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as an anti-tumor agent could help point the way to
new ways of preserving fertility in cancer patients
even after the genotoxic stress of chemotherapy
and radiation. The current widespread use of
assisted reproductive technologies and the limited
knowledge available about the consequences of
sperm DNA damage both demand further
exploration of DNA repair mechanisms in
spermatozoa. Poly (ADP-ribose) polymerase may
hold the key to a better understanding of these
repair mechanisms inherent in spermatozoa and
the importance of such mechanisms in producing
healthy pregnancies.
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