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Unresectable renal cell carcinoma continues to be a  great challenge due to our 
limited understanding of its underlying pathophysiology. We explored the relation-
ship between KIF11 protein expression and the clinical courses of clear cell renal 
cell carcinoma (ccRCC) using a tissue microarray.
Material and methods: The tissue microarray contained specimens derived from  
90 patients, cancer and matched adjacent non-cancerous tissue (2 cores per case), 
followed up for 7 years. Tumour samples were evaluated for KIF11 expression using 
the H-score, and their correlations with clinicopathological data and survival data 
were analysed. 
72.7% of ccRCC tissues presented KIF11 cytoplasmic expression with a median 
value of 20 (interquartile range 0–200). The nuclear staining was positive in 
36.36% of ccRCC tissues. Among controls, nuclear KIF11 expression was ab-
sent, but cytoplasmic expression was identified in all cases, with a median value  
of 230 (interquartile range 45–290). Cytoplasmic KIF11 expression in ccRCC tis-
sues was lower than in the control tissues and was positively correlated with tu-
mour grade and mortality (p < 0.05). KIF11 nuclear expression did not correlate 
with overall survival. 
Elevated expression of KIF11 predicts poor clinical outcome in ccRCC patients. 
Downregulation of KIF11 may provide a new therapeutic strategy for ccRCC.

Key words: KIF11, ccRCC, kidney cancer, renal carcinoma, expression, prognosis, 
survival, OS.
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Introduction

Renal cell carcinoma (RCC) is in the top 10 most 
common cancers, and its incidence is on the rise. De-
spite significant advances in medical management, the 
American Cancer Society estimates that in 2020 in 

the US, 14,830 people will die from this disease [1]. 
The most common subtype of RCC that accounts for 
65–70% of cases, is the clear cell renal cell carcino-
ma (ccRCC). It originates from the proximal tubular 
epithelial cells of nephrons [1, 2]. The extraordinary 
heterogeneity of this tumour poses a great challenge 
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for its effective treatment [3]. Thus, the establishment 
of novel molecular targets is an attractive approach.

KIF11, as a motor protein encoded by the KIF11 
gene, assists in spindle dynamics. Among its main 
functions are chromosome positioning, centrosome 
separation, and establishing a bipolar spindle during 
mitosis [4]. Its overexpression reflects poor progno-
sis in various carcinomas including gastric, laryn-
geal, breast, prostate, and pancreatic [5–9]. Recent 
reports together with in silico analysis suggest that 
KIF11 may also contribute to ccRCC progression. 
We explored associations of KIF11 expression with 
the clinical course using a  tissue microarray (TMA) 
and validated these findings in The Cancer Genome 
Atlas (TCGA).

Material and methods

Tissue microarray

The tissue microarray was purchased from a com-
mercial supplier (US Biomax, Rockville, MD).  
The tissue microarray (HKid-CRC180Sur-01) con-
tained specimens derived from 90 patients, cancer 
and matched adjacent non-cancerous tissue (2 cores 
per case), followed up for 7 years. Samples were 
consecutively collected from July 2006 to February 
2008, following informed consent and under ap-
proval of the Ethics Committee. All of the specimens 
were obtained prior to any therapeutic manipulation.  
The diagnosis was made by at least 2 different eval-
uators in accordance with up-to-date World Health 
Organization guidelines. Two cores with ccRCC and 
5 cores with normal adjacent tissue were missing and 
therefore were excluded from the analysis. Retriev-
able clinicopathological data included age, pathologi-
cal diagnosis, TNM, stage, grade, and overall survival 
(OS). The quality of each specimen was additionally 
approved by our pathologists. 

Immunohistochemistry

The tissue microarray slides were processed at the 
Department of Clinical Pathology. Primary rabbit 
polyclonal anti-KIF11 (HPA010568; Sigma-Aldrich, 
Merck KGaA, Darmstadt, Germany) antibody was 
used to estimate the expression of KIF11 protein. 
The standardization of the protocol was achieved us-
ing a series of control reactions: positive and negative. 
The positive control reaction was performed in accor-
dance with reference sources (Human Protein Atlas: 
http://www.proteinatlas.org) and the antibody data-
sheet. KIF11-positive control reaction performed on 
pancreatic cancer tissue presented cytoplasmic and 
nuclear expression. Furthermore, all negative control 
reactions were performed on additionally analysed 
tissue sections by substituting the primary antibody 
with a solution of 1% bovine serum albumin diluted 

in phosphate-buffered saline. Immunohistochemical 
(IHC) staining was performed using primary rabbit 
polyclonal anti-KIF11 (1 : 200) antibody and visu-
alization system EnVisionFlex+ Anti-Mouse/Rabbit 
HRP-Labelled Polymer (Dako, Agilent Technologies) 
on an Autostainer Link48 platform. Lastly, dehy-
dration of tissue sections was performed in ethanol  
at increasing concentrations (80–98%), then cleared 
in a  series of xylenes (I–IV) and cover-slipped  
in a medium (Dako, Agilent Technologies, USA).

Immunohistochemical analysis and scoring

All immunostained samples were evaluated by 2 ex- 
perienced pathologists blinded to the patients’ clini-
cal data. The level of KIF11 cytoplasmic and nuclear 
expression were assessed using the light microscope 
at 20× and 40× magnification. The extent of cyto-
plasmic immunoreactivity was assessed by H-Score.  
In this case, we distinguished 3 levels of expression in-
tensity (1+ = ‘low’/2+ = ‘moderate’/3+ = ‘high’). 
The percentage of those cells were applied to the fol-
lowing formula: 

1 × (% cells 1+) + 2 × (% cells 2+) + 3 ×  
(% cells 3+) = H-score 

The final score ranged 0–300. The nuclear expres-
sion of KIF11 was evaluated using a  two-point scale  
(0 = ‘negative IHC result’/1 = ‘positive IHC result’).

Statistical analysis

All the statistical analyses were performed using 
Statistica version 10 (StatSoft) and Microsoft Excel 
2019. We used the log-rank test to compare the sur-
vival distributions of patients with different protein 
expression patterns. The Kaplan-Meier estimator was 
performed to estimate the survival functions from 
lifetime data. We used the Mann-Whitney U  test  
to compare the protein expressions between cancer-
ous and adjacent normal cells. Cox Proportional Haz-
ards for analysing ccRCC survival data were consid-
ered. The data were divided into 4 groups according 
to patients’ ages (age ≤ 65 and age > 65 years), grade 
(G1 and G2, G3), stage (T1 and T2, T3) and KIF11 
expression level (KIF11 ≤ 42.5 – low and KIF11  
> 42.5 – high). The p-value < 0.05 was considered 
statistically significant.

Ethical review and approval were waived for this 
study due to the lack of access to identifiable private 
information. Informed consent was obtained from all 
subjects involved in the study

Results

The study included 88 pairs of ccRCC and cor-
responding non-cancerous tissue. During the IHC 
staining procedure, 5 cores of corresponding tissue 
and 2 cores of ccRCC were lost. Summarized charac-
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teristics of the TMA cohort are presented in Table I. 
The median follow-up was 7.0 years. 

64 of 88 ccRCC tissues (72.7%) presented KIF11 
cytoplasmic expression with the median value of  
20 (interquartile range 0–200). The nuclear staining was 
positive in 32 of 88 ccRCC tissues (36.36%). Among 
controls, nuclear KIF11 expression was absent, but cy-
toplasmic expression was identified in all cases, with 
a median value of 230 (interquartile range 45–290). 
Cytoplasmic KIF11 expression in ccRCC tissues was 
lower compared to control tissues (p < 0.05) (Fig. 1A). 

Cytoplasmic KIF11 expression positively correlated 
with tumour grade (p = 0.0013) and mortality  
(HR 2.17; 95% Cl: 0.99–4.73; p = 0.047) (Figs. 1B, 
2A). Cox Proportional Hazard was statistically sig-
nificant only for T1 tumours. HR estimates of 0.19  
(95% Cl: 0.04–0.96; p = 0.045) for low KIF cyto-
plasmic expression and 0.42 (95% Cl: 0.15–1.16;  
p = 0.049) for high KIF cytoplasmic expression were 
calculated. KIF11 nuclear expression did not correlate 
with OS (p = 0.72) (Fig. 2B). KIF11 cytoplasmic or 
nuclear expression did not correlate with tumour stage.

Discussion
Surgical resection is the best therapeutic strat-

egy for localized RCC [10]. However, around 30% 
of patients experience tumour recurrence following 
complete resection [11, 12]. Immunotherapy and/or 
targeted therapy represent a  standard of care for 
stage IV and recurrent RCC. Despite relatively high 
response rates to these agents, most patients eventu-
ally succumb to cancer progression. Versus KIF11 has 
been shown to promote the epithelial-mesenchymal 
transition and activate many molecular mechanisms 
involved in cancer progression, including Wnt/β-
catenin, PI3K/AKT/mTOR, and MAPK/ERK path-
way [9, 13, 14]. Targeting KIF11 inhibits invasion, 
proliferation, and self-renewal in glioblastoma cell lines 
[15]. A similar effect was observed in breast cancer and 
prostate cancer cells [9, 16–20]. Filanesib, a  potent 
KIF11 inhibitor, has recently demonstrated clinical  
efficacy in patients with multiple myeloma [21]. 

The metastatic competence of ccRCC is afforded 
by chromosome complexity, in particular 9p and 14q 
loss [22]. We found that high KIF11 cytoplasmic (but 
not nuclear) expression correlates with poor survival 
in patients with ccRCC. KIF11 within the cytoplasm 
contributes to centrosome separation and bipolar 
spindle formation and can provoke vital chromo-
some-level alterations. Hence, it could play a signif-
icant role in driving ccRCC evolution and metastatic 
spread. Then, targeting KIF11 would be an attrac-
tive complement to evolution-targeted therapy. Evo-
lution-targeted therapy in ccRCC is a novel concept 
that relies on patient stratification according to the 
deterministic evolutionary trajectory of the tumour 
[23]. Currently there are 7 well described evolution-
ary trajectories in ccRCC according to the tumour’s 
genomic characteristics, evolution mode, and clinical 
course [24]. While the evolutionary trajectory could 
be used as a biomarker for guiding the intervention, 
inhibition of KIF11 could further curb cancer evolu-
tion, making this approach more effective.

According to the cBioportal for Cancer Genomics, 
a  database with genome sequencing and compara-
tive genome hybridization, KIF11 overexpression is 
driven by epigenetic alterations in 99.61% of cases. 
The remaining causes include genetic amplifications 

Table I. Baseline characteristics of the tissue microarray  
(n = 88) patient cohort

Clinical information n (%)

Age [years] 

Mean 59.09

Range 29–83

Stage 

I 60 (68.20)

II 17 (19.30)

III 3 (3.40)

IV 2 (2.30)

Unknown 6 (6.81)

T stage 

T1 63 (71.59)

T2 17 (19.32)

T3 4 (4.55)

Unknown 4 (4.55)

Lymph nodes 

N1 1 (1.11)

N0/Nx 85 (96.59)

Unknown 2 (2.30)

Metastasis 

Yes 2 (2.28)

No 86 (97.72)

WHO/ISUP grade 

G1 33 (37.5)

G2 41 (46.59)

G3 13 (14.77)

G4 1 (1.14)

Median follow-up time [years] 7.0

Disease course 

Alive 60 (68.18)

Dead 28 (31.82)
ISUP – International Society of Urological Pathology, WHO – World Health 
Organization
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Fig. 1. A) Cytoplasmic KIF11 expression in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissue (control). 
B) KIF11 expression according to ccRCC grade
ccRCC – clear cell renal cell carcinoma

Fig. 2. A) The survival curve of clear cell renal cell carcinoma (ccRCC) patients according to cytoplasmic KIF11 expres-
sion. B) The survival curve of ccRCC patients according to nuclear KIF11 expression
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and missense mutations. The epigenetic alterations 
are reversible and play a central role in renal carcino-
genesis [25]. Hence, specifically targeting these al-
terations could restore a  normal epigenetic pattern 
and potentially cure the disease. Currently, targeted 
epigenetic therapies are under investigation. Their 
combination with antiangiogenic or immune check-
point treatments represents a particularly promising 
paradigm that could overcome frequent monother-
apy resistance [26–29]. Epigenetic therapeutics are 
classified into agents that have a  targeted effect, 
such as anti-miRNA oligonucleotides, and agents 
that have a more broad effect and lead to large-scale 
changes in gene expression, such as HDAC inhibitors 
(HDACi) [25]. The principal problem with the first 
group of agents is their difficult delivery to cancer 
cells [30]. The second group of agents, on the other 
hand, activate genes that are normally repressed, 
leading to adverse off-target effects that influence 

numerous processes in the body [31]. As a result, no 
epigenetic alteration can be both safely and precisely 
targeted, and therefore successful clinical translation 
of epigenetics in RCC remains to be seen.

To evaluate the association between KIF11 mRNA 
expression and the clinical course of ccRCC we ac-
cessed the TCGA database [32, 33]. In TCGA, pa-
tients were classified into 2 expression groups based 
on the KIF11 FPKM (number fragments per kilobase 
of exon per million reads) value. To choose the best 
FPKM cut-off for grouping the patients, significant 
differences in the OS of the groups were analysed, 
and the value yielding the lowest log-rank p-val-
ue (1.5e–8) was selected. KIF11 expression among  
119 of 528 (22.54%) patients was higher than the 
established cut-off. The Kaplan-Meier survival es-
timators evaluated the prognosis of each group.  
The survival outcomes of the 2 groups were compared 
by log-rank tests. The five-year survival was reached 
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by 69% of patients with low KIF11 expression and 
44% of patients with high KIF11 expression. Accord-
ing to data from the TCGA database, elevated KIF11 
mRNA expression is associated with poor prognosis 
in ccRCC (p < 0.05). These results are in accordance 
with our findings. 

Our study cohort comprised mainly low-grade 
and low-stage cases. Therefore, further research in-
corporating advanced, unresectable tumours is need-
ed to translate our results toward a future potential 
clinical intervention.

Conclusions

Elevated expression of KIF11 predicts poor clinical 
outcome in ccRCC patients. Downregulation of KIF11 
may provide a new therapeutic strategy for ccRCC.
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