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Abstract

The dominant part of human infections is associated with biofilm formations. Biofilm represents structured communities of 
bacterial or fungal cells enclosed in self-produced polymeric matrixes adherent to supporting surfaces. Microbial DNA and 
the host cell DNA, after their release at the infection site, show the ability to promote biofilm formation. Between the differ-
ent constituents of biofilm matrixes, extracellular DNA (eDNA) may be the only component indispensable for the initial at-
tachment and early biofilm formation through an enhanced matrix structural integrity. The effect of DNA on bacterial/fun-
gal attachment is non-specific, as indicated by the stimulatory effect of plasmid, chromosome, or eukaryotic DNA. DNase I 
impaired bacterial biofilm growth and the targeting eDNA were recently proposed to eliminate and/or prevent different 
microbial infections associated with biofilm formations.

Streszczenie

Znaczna część infekcji występujących u ludzi jest związana z powstawaniem biofilmu. Biofilm stanowi złożoną strukturę 
składającą się z drobnoustrojów oraz wyprodukowanej przez nie polimerowej macierzy, umożliwiającej adhezję do różnych 
powierzchni. Drobnoustrojowe oraz ludzkie DNA, pochodzące odpowiednio z mikroorganizmów i komórek gospodarza, 
uwalniane w  miejscu infekcji działa jako czynnik promujący rozwój biofilmu. Uważa się, że zewnątrzkomórkowe DNA 
(eDNA), dzięki zwiększeniu integralności konstrukcji macierzy, jest niezbędnym elementem biorącym udział w adhezji bak-
terii do podłoża i wczesnym formowaniu się biofilmu. Wyniki badań wykorzystujących plazmidy, chromosomy oraz euka-
riotyczne DNA wykazały, że wpływ eDNA na rozwój biofilmu jest niespecyficzny i niezwiązany bezpośrednio ze źródłem 
materiału genetycznego. DNaza I hamuje powstawanie biofilmu. Postuluje się, że wykorzystanie eDNA jako celu terapeu-
tycznego może mieć istotne znaczenie w zapobieganiu i leczeniu zakażeń związanych z formowaniem się biofilmu.

Introduction

The process of bacterial biofilm development con-
sists of an initial adhesion and the aggregation of dis-
persal cells from mature biofilm, which are encased 
in self-produced extracellular polymeric substances 
(EPSs) [1, 2]. The polysaccharides, host F-actin, and 
extracellular DNA (eDNA) are the major components 

present in a biofilm matrix [3]. The majority of these 
molecules are recognised by the innate immune sys-
tem via toll-like receptors (TLR), a family of membrane 
proteins [4, 5]. Extracellular polymeric substances can 
interact with antibiotics, which decreases their anti-
bacterial potential [6, 7]. eDNA is a crucial component 
of the biofilm matrix during the first stages of biofilm 
formation [8, 9]. In some cases, eDNA might represent 
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the only source of carbon and energy for microbial 
growth [10]. The DNA network within a  biofilm is 
also involved in gene transfers [11] and the develop-
ment of antimicrobial resistance [12, 13]. Many micro-
organisms release DNA during lysis, which occurs as 
part of the quorum sensing mechanism and initiates 
the process of biofilm formation [14] (Figure 1). Large 
amounts of DNA are released from neutrophils dur-
ing necrosis or as extracellular traps (NETs), resulting 
in the accumulation of this polymer at the infection 
sites, such as those observed in cystic fibrosis (CF) air-
ways [15]. eDNA contributes significantly to sputum 
viscosity, which can be reduced following the addi-
tion of recombinant DNase I  [16–18]. Interestingly, 
eDNA, reduces the biofilm’s susceptibility to some an-
tiseptic and disinfectant agents [12, 13]. 

The important role of eDNA in biofilm 
architecture, the development of resistant 
strains, and the host immune response

The accumulation of eDNA in microbial biofilm 
plays different functions [19]. Whitchurch et al. re-
ported that the formation of a stable biofilm and the 
attachment of bacterial cells to culture flow-chambers 
are prevented by the addition of DNase I to the cul-

ture medium [20]. Additionally, the ability of DNase I 
to reduce mature biofilm masses suggests that eDNA 
is critical for the integrity of these bacterial communi-
ties. This role, in particular, of eDNA in the formation 
of biofilm structures is supported by an increasing 
number of studies, reporting the inhibitory effects 
of numerous antibiotics and DNase I on the growth 
of established biofilms of various bacteria, used sep-
arately or together. Treatment of the biofilms with 
DNase I  significantly reduces neutrophil activation 
markers. DNase I treatment might dissolve an estab-
lished 72-hour biofilm; however, much older 84-hour 
biofilm was more resistant to the addition of DNase 
I, suggesting that the matrix in mature biofilm may 
contain substances other than eDNA or that mature 
biofilms may produce proteolytic exoenzymes to lo-
cally deactivate the DNase I  [4]. Two mechanisms 
were proposed to describe the potential of DNase I to 
inhibit microbial biofilm formation. DNase I  might 
shorten the nucleic acids linked to bacteria surfaces 
that are involved in bacterial adhesions to environ-
mental components where the biofilm forms. The di-
gestion of eDNA mainly in young biofilms, eliminates 
the major cell-to-cell adhesion and interconnecting 
aggregates of microbial cells [4, 21]. Interestingly, it 

Figure 1. Extracellular DNA (eDNA) accumulation at the infection sites might occur as a result of DNA released from host 
cells and infecting bacteria cells. DNA from neutrophils might be release in the form of neutrophil extracellular traps (NETs) 
as part of an antimicrobial response in which neutrophils weave web-like nets. DNA released from other host cells usually 
follow a necrosis process. Bacteria cells usually release DNA actively based on environmentally dependent autolysis
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was recently shown that the combination of poly (as-
partic acid) with DNase I resulted in a synergistic in-
crease in biofilm disruptions [22]. eDNA is involved in 
horizontal gene transfers (HTG), which mainly occur 
through the transformation, conjugation, or trans-
duction of bacterial cells. Transformation requires 
the availability of eDNA within the environment [23, 
24]. eDNA present in bacterial biofilm communities 
constitutes a  dynamic gene pool from which bacte-
ria can derive genetic information by HGT. Acquired 
antibiotic resistance may be due to a mutation or an 
acquisition of resistant genes. Biofilm production and 
eDNA released synergistically, contribute to the de-
velopment and spread of an antibiotic resistance of 
HTG [4]. Neutrophils form the first line of defence 
against invading microbial pathogens – the essential 
effectors that mediate the phagocytosis and destruc-
tion of bacteria through oxygen-dependent and ox-
ygen-independent mechanisms [25]. TLRs recognise 
pathogen-derived ligands and follow cell  activation 
via the Toll/IL-1R (TIR) signal pathway [26]. TLR9, as 
an intracellular receptor, is required for a response to 
the unmethylated CpG motifs of bacterial DNA [27]. 
TLR2  is critical for the recognition of several patho-
gens as a Gram-positive bacteria, including bacterial 
lipoproteins, peptidoglycan (PGN), and lipoteichoic 
acids [4]. eDNA activates neutrophils through CpG- 
and TLR9-independent mechanisms [25]. eDNA also 
plays a  significant role in neutrophil activation by 
bacterial biofilms, because the treatment of lasI rhlI 
mutant biofilm with DNase I does not modify its abil-
ity to stimulate neutrophil IL-8 and IL-1b [25]. Upon 
phagocytosis and the digestion of Staphylococcus au-
reus in the phagosome, bacterial DNA is liberated, and 

it engages TLR9. TLR9-dependent activation can be 
triggered not only by phagocytosis of whole S. aureus 
cells, but also by eDNA [19]. 

Biofilm formation of Pseudomonas 
aeruginosa strains

The role of eDNA in bacterial infections has been 
reported mainly with P. aeruginosa infections [12, 
28, 29]. During P. aeruginosa infections, eDNA is re-
leased mostly by lysis that is regulated by the quo-
rum sensing process [28]. Recent data demonstrates 
that eDNA from P. aeruginosa biofilm matrixes plays 
a  critical role in activating neutrophil proinflamma-
tory responses (Figure 2). Moreover, the data shows 
that the degradation of eDNA significantly reduces 
the release of proinflammatory cytokines by neutro-
phils added to established biofilms, as well as bacte-
rial phagocytosis [25]. Allesen-Holm et al. suggest 
that extracellular  DNA  is analogous with chromo-
somal DNA in P. aeruginosa, which serves as a cell-to-
cell interconnecting component in biofilm matrixes 
[28]. They also presented out that eDNA is primarily 
located in high concentrations within the stalks of 
mushroom-shaped microcolony structures. Mon-
tanaro et al. suggest that the presence of eDNA in 
Pseudomonas biofilms probably has a  stabilising role 
[4]. The stabilisation and structural development of  
P. aeruginosa biofilms depend on the quorum sensing 
(QS) systems lasRI and rhlRI [30, 31]. In some, the ex-
tension of the rhlRI systems is controlled by the lasRI 
system [31]. Through QS mechanisms, bacteria can 
monitor their density in cell populations through ex-
tracellular signalling molecules [32]. In the case of the 

Figure 2. Major functions of extracellular DNA (eDNA) consist of activation or pro-inflammatory responses that involve 
the activation of TLR9 pathways and the initiation of bacterial biofilm formation

Immunocompetent cells

eDNA

TLR-9

TLR-9 TLR-9

Proinflammatory response

Planctonic form

Surface

Initial attachment Microcolony
formation

Biofilm maturation



Extracellular DNA as an essential component and therapeutic target of microbial biofilm 135

Studia Medyczne 2015; 31/2

las system, gene products, lasI, control the synthesis 
of the actively secreted, extracellular signalling mole-
cule 3-oxo-C12-homoserine lactone (3-oxo-C12-HSL). 
When the concentration of lactone increases within 
the environment of cells, following its penetration 
into a  microorganism, the production of the tran-
scriptional activator LasR increases. This complex has 
the ability to activate the expression of many genes, 
including enzymes lasA, lasB, and the rhlR-rhlI sys-
tem [31, 33, 34]. The signal molecules involved are pri-
marily C4-HSLs, in the case of the rhlRI system. The 
second QS system in P. aeruginosa is associated with 
the regulatory protein RhlR and the C4-AHL (acylat-
ed homoserine lactone) molecule, which is the prod-
uct of the rhlI gene. The C4-AHL molecule connects 
with the Rhl, which is the transcription activator. 
This complex (Rhl-C4) regulates the operon respon-
sible for the synthesis of some factors, including rhlAB 
[31, 35]. The Pseudomonas quinolone signal (PQS), 
a  third signalling system based on 2-heptyl-3-hy-
droxy-4-quinolone, is part of the quorum-sensing 
regulatory network [36]. Allesen-Holm et al. suggest 
that QS-controlled factors, which might play a regu-
latory role in biofilm development by P. aeruginosa, 
are associated with programmed DNA releases [28]. 
Biofilms formed by lasI rhlI mutant strains stimulate 
lower levels of cytokine production [25]. On the other 
hand, DNase I treatment inhibits P. aeruginosa biofilm 
growth in vitro [28, 29]. It was recently shown that 
the destruction of eDNA could modify the properties 
of biofilms formed by P. aeruginosa and Streptococcus 
pneumonia [20, 37, 38]. Is it known that P. aeruginosa 
encodes PEL, PSL, and alginate extracellular polysac-
charides. A new report presented that pel-, psl-, and 
alg-independent biofilms are also regulated by the re-
lease of eDNA [39]. 

Biofilm formation of Staphylococcus aureus 
strains

Biofilm formation in S. aureus consists of a two-step 
process. The initial phase consists of the attachment 
of cells to a surface, and the second phase consists of 
cell–cell aggregation and the formation of a  multi-
layered architecture [40]. In S. aureus, the CidA/LrgAB 
system regulates cell lysis, eDNA releases, and biofilm 
development by possibly regulating access of murein 
hydrolases to cell wall substrates [41]. The lrg operon 
reduces extracellular murein hydrolase activity and 
increases penicillin tolerance, whereas the cid operon 
increases extracellular murein hydrolase activity and 
decreases penicillin tolerance [4]. Furthermore, Rice 
suggests that eDNA has a biological role in bacterial 
programmed cell death and cidA mediated lysis. Some 
results have shown that the treatment of streptococcal 
biofilm with DNase I  inhibits biofilm formation [37, 
42]. Houston et al. presented a production of eDNA in 
S. aureus suspension during cell lysis mediated by the 

autolysin AtlA [43]. The authors also demonstrated the 
essential role of eDNA in the primary attachment and 
early stages of Atl-dependent, FnBP-mediated MRSA 
biofilm. Kaito et al. demonstrated that S. aureus colony 
spreading requires the digestion of eDNA by nuc1 and 
nuc2 secretory nucleuses [44]. They believe that two 
possible mechanisms are involved in blocking the 
effect of eDNA on S. aureus colony spread. The first 
is associated with increased viscosity of the extracel-
lular matrix that inhibits colony spread. The second 
is based on the recognition of eDNA by S. aureus, re-
sulting in inhibition of the expression of some genes, 
which leads to the inhibition of colony spread. Ka-
plan et al. assessed S. aureus biofilm formation in the 
presence of a sub-minimal concentration of β-lactam 
antibiotics. They observed that low level concentra-
tions of β-lactam induce the release of autolysin-de-
pendent eDNA and induce biofilm formation of the  
S. aureus strain [45]. This data remains consistent with 
other studies demonstrating that eDNA form a major 
biofilm matrix in S. aureus biofilms cultured in a de-
ficiency of antibiotics [38, 41, 43, 46]. The model of 
the autolysis of S. aureus involved an altruistic suicide 
(Figure 1). Staphylococcus aureus cells may be divided 
into altruists and survivors, and in the environment 
that activates biofilm formation, the altruists commit 
suicide by programmed cell death [4]. 

Biofilm formation of Staphylococcus 
epidermidis and Streptococcus pneumoniae 
strains

Qin et al. showed that eDNA is a major component, 
essential for the initial attachment of S. epidermidis to 
surfaces, as well as for the subsequent early phase of 
biofilm development by this bacteria [47]. Using poly-
merase chain reaction (PCR), the authors showed that 
extracellular DNA is similar to genomic DNA. The ac-
tivity of the autolysin AtlE causes a release of eDNA 
from S. epidermidis. The eDNA was also found in 
a wild-type of S. epidermidis biofilm. The established 
biofilms were associated with AtlE-mediated cell lysis 
[47]. Heilmann et al. investigated another autolysin 
protein associated with DNA releases in the S. epider-
midis. It was named Aae, and it is characterised by bac-
teriolytic activity and adhesive properties [48]. Inter-
estingly, Vuong et al. reported that the expression of 
AtlE and the biofilm formation in S. epidermidis were 
increased in an agr quorum sensing mutant, and it can 
be linked to DNA releases [47, 49]. Moreover, Izano  
et al. demonstrated that S. epidermidis biofilms were 
not inhibited and/or detached during DNase I  treat-
ment [38]. Streptococcus pneumoniae are characterised 
by a high prevalence of lysogenic bacteriophages ex-
isting in their host chromosome, and the researchers 
proposed that prophage impulsive activation results 
in bacterial lysis that provides eDNA. eDNA enhances 
pneumococcal biofilm development [50]. Streptococcus 
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pneumoniae contains a major autolysin LytA, an N-ace-
tyl-muramyl-L-alanine amidase [51]. Moreover, DNA 
release is associated with cell lysis, dependent upon 
LytA [52]. The observation that S. pneumoniae biofilm 
formation depends upon the presence of eDNA and 
that LytA mutants have a  reduced capacity to form 
biofilms suggests that LytA-induced pneumococcal 
lysis could be similar with biofilm formations and the 
release of eDNA [21, 37, 50].

Fungal biofilms

The life-threatening infections caused by Candida 
albicans are often associated with biofilm formation 
[53, 54], and the mainstream displays of candidiasis, 
at both mucosal and systemic sites, are related to the 
formation of biofilms [54–56]. The first step of biofilm 
formation (mainly in Candida glabrata biofilm) is ini-
tially conditioned by the activity of adhesion, which 
is required for surface attachment. Their presence is 
also necessary for cell-cell stabilisation in the form 
of a  biofilm structure. It was discovered that their 
expression is strictly correlated with the degree of 
biofilm development [57]. The stage of fungal biofilm 
formation is clearly related to the eDNA level. Various 
studies have shown that eDNA is an important fac-
tor in Candida biofilms, including those of C. albicans,  
C. tropicalis, and C. parapsilosis [58–61]. This is consis-
tent with previous research demonstrating that eDNA 
is a substantial component of mature C. albicans bio-
film [58]. Interestingly, studies conducted by Rajen-
dran et al. revealed that the eDNA released during 
Candida biofilm formation depends upon the fungal 
species and is connected to biofilm heterogeneity. It 
was hypothesised that the diversity of biofilms is con-
ditioned upon the difference in the amount of released 
eDNA – it was assumed that isolates, characterised by 
their greater ability to form biofilms, liberate more 
eDNA in comparison with isolates developing struc-
turally simple biofilms. Importantly, eDNA-mediated 
heterogeneity of fungal biofilm significantly affects 
the pathogenicity and sensitivity of these pathogens 
to antifungal agents. Given the above, a detailed in-
vestigation of the mechanism of such a phenomenon 
is required. To date, studies have revealed that the 
differential degree of biofilm mass formations are 
associated with chitinase regulated autolytic events 
[62]. Growth in the pathogenicity of fungi may also 
be conditioned by morphological transitions of fungi 
to more invasive forms during biofilm development. 
Recent studies indicate that eDNA may play a  key 
role in the transition from yeast to hyphal growth in  
C. albicans cultures. It is worth noting that a low con-
centration of eDNA is able to induce the transfor-
mation of a  yeast form [63]. Since hyphal forms are 
characterised by increasing resistance to antifungal 
treatment and they play a significant role in C. albicans 
pathogenicity, the targeting of eDNA is gaining im-

portance [64]. It was shown that increases in a biofilm 
mass is induced by both homogenous and heteroge-
neous eDNA, which takes on particular significance 
in light of the studies reporting a  major occurrence 
of polymicrobial infections [63, 65]. An intrinsic re-
sistance of C. albicans biofilms against most antifun-
gal agents like fluconazole and amphotericin was 
reported [66–72]. The detailed mechanism of antifun-
gal resistance of fungal biofilms remain unclear. It is 
known that C. albicans biofilm cells display reduced 
susceptibility to polyenes and azoles as compared to 
planktonic cells [8]. Improved efficacy of amphoteri-
cin B in combination with DNase I, which degrades 
eDNA in C. albicans biofilm matrixes, was observed 
[8]. Some results have shown that caspofungin is 
highly active against isolates demonstrating high lev-
els of fluconazole resistance [73–75]. Rajendran et al. 
presented that Aspergillus fumigatus releases eDNA 
during autolysis in a phase-dependent manner. This 
is in agreement with previous studies conducted 
on Candida species, showing that the level of eDNA 
strictly correlates with the maturity of biofilm [58]. 
They also showed that DNase I treatment destabilised 
biofilm integrity in A. fumigatus [61]. Moreover, the 
authors demonstrated that the combination of DNase 
I with amphotericin B and caspofungin significantly 
improved antifungal activity.
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