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ABSTRACT: Increasing physical activity (PA) is recognised as an efficacious approach for preventing and 
treating cardiometabolic diseases. Recently, the composition of microorganisms living within the gut has been 
proposed as an important appropriate target for treating these diseases. Whether PA is related to faecal 
microbiota diversity and composition in humans remains to be ascertained. Thus, we examined the association 
of the time spent in objectively measured PA with faecal microbiota diversity and composition in young adults. 
A cross-sectional study enrolled 88 young adults aged 22.0 ± 2.3 years (72.7% women), whose time spent in 
PA at different intensities was objectively measured with a wrist-worn accelerometer for 7 consecutive days. 
Faecal microbiota diversity and composition were analysed with hypervariable tag sequencing of the V3–V4 region 
of the 16S rRNA gene. The mean Euclidean Norm of the raw accelerations Minus One (mg) during waking time, 
considered as overall PA, and the time spent in vigorous PA were positively correlated with alpha diversity 
indexes (all rho ≥ 0.23, P ≤ 0.034). Regarding faecal microbiota composition, participants with low time spent 
in vigorous PA had higher relative abundance of the Gammaproteobacteria class (q = 0.021, FDR = q-value) 
compared to the participants with high time spent in vigorous PA, and lower relative abundance of the 
Porphyromonadaceae family (q = 0.031) and the Alistipes genus (q = 0.015) compared to the individuals with 
high and intermediate time spent in vigorous PA, respectively. Our results suggest that PA, especially of vigorous 
intensity, is related to faecal microbiota diversity and the Gammaproteobacteria class and Porphyromonadaceae 
family in young adults.
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INTRODUCTION
Lifestyle physical activity (PA) is associated with a myriad of physi-
ological adaptations that benefit human health. PA is one of the most 
effective strategies to prevent and combat cardiometabolic alterations 
and is related to a 27% decrease in mortality risk [1]. However, the 
underlying mechanisms that explain how PA enhances cardiometa-
bolic health remain to be elucidated.

Gut microbiota refers to microbial communities colonising the 
gastrointestinal tract [2], indispensable in regulating the host nutri-
tion, metabolic function and immunological response [3, 4]. Dysbi-
osis arises from an imbalance within microbial communities [5], in-
fluenced by various factors, including dietary patterns, sedentary or 
unhealthy lifestyles [6–8], and medication use [9]. This imbalance, 
in turn, correlates with conditions such as obesity and cardiometa-
bolic diseases [10]. Recent evidence suggests that PA is one of hu-
mans’ most significant lifestyle factors influencing gut microbiota di-
versity and composition [11, 12]. For instance, case-controlled studies 
showed that faecal microbiota from athletes [13, 14] was much 
more diverse and had a higher proportion of several bacterial taxa 
than healthy sedentary individuals. Similarly, in football athletes, it 
was found that increased levels of PA promoted greater diversity of 
the faecal microbiota via the production of short-chain fatty acids by 
gut bacteria, enhancing overall health [15]. Another cross-sectional 
study observed that premenopausal women meeting the PA World 
Health Organization recommendations had a greater relative abun-
dance of Akkermansia and Faecalibacterium genera than sedentary 
women [16]. Evidence indicates that Akkermansia and Faecalibac-
terium genera are associated with reduced inflammation and, there-
fore, may play a role in preventing the development of cardiometa-
bolic diseases [17]. Based on that, a recent study showed that 
individuals with higher levels of PA showed a different Mediterra-
nean pattern and faecal microbiota composition than individuals with 
obesity who reported lower levels of PA [18]. Most studies investi-
gating the relationship between PA and faecal microbiota composi-
tion have used self-reported questionnaires to determine PA lev-
els [13, 14, 19]. However, these instruments have the disadvantage 
of misclassifying PA levels and thus compromise the ability to de-
tect valid associations between PA levels and faecal microbiota com-
position [20]. Based on the aforementioned studies using self-re-
ported data, we hypothesise that increased levels of PA, at different 
intensities, are associated with elevated faecal microbiota diversity 
and a greater prevalence of beneficial bacteria. Thus, through the 
utilization of objective measures of PA in the present study, we aimed 
to explore the association between the time spent in objectively mea-
sured PA at different intensities with faecal microbiota diversity and 
composition in a cohort of young individuals.

MATERIALS AND METHODS 
Design study and participants
A total of 92 (65 women) young healthy adults, aged 18–25 years, 
were included in the present cross-sectional study. This study was 

carried out within the framework of the ACTIBATE study [21], an 
exercise-based randomized controlled trial (Clinical Trials.gov ID: 
NCT02365129). All assessments were performed in Granada 
(Spain) between October and November in 2016. Inclusion crite-
ria were: being engaged in less than 20 min of moderate-vigorous 
PA on less than 3 days/week, having a stable body weight over the 
last 3 months (< 3 kg change), not smoking, not taking any 
medication (including antibiotics in the last 3 months), not present-
ing any acute or chronic illness and not being pregnant. The study 
protocol and experimental design were applied in accordance with 
the last revised ethical guidelines of the Declaration of Helsinki. 
The study was approved by the Ethics Committee on Human Re-
search of the University of Granada (no. 924) and the Servicio 
Andaluz de Salud (Centro de Granada, CEI-Granada); all partici-
pants signed informed consent.

Physical activity assessment
PA variables were objectively measured with one accelerometer on 
the non-dominant wrist (ActiGraph GT3X+, Pensacola, FL), during 
7 consecutive days (24 h/day) [21]. Detailed information about how 
to wear the accelerometer was given to participants, including the 
instruction to remove it in daily water-based activities, such as wash-
ing dishes or showering.

The sampling frequency of 100 Hz was selected to store the 
raw accelerations of the accelerometers [22]. We exported and 
converted the raw accelerations to the “.csv” format using ActiL-
ife v.6.13.3 software (ActiGraph, Pensacola, FL, US). Afterwards, 
the “ggir” [23] package in R software was used to process the raw 
“.csv” files. This processing consisted of: (i) local gravity data au-
to-calibration of accelerations according to the local gravitational 
acceleration [24], (ii) calculation of the Euclidean Norm of the raw 
accelerations Minus One G with negative values rounded to 
0 (ENMO) calculated elsewhere [25], (iii) detection of non-wear 
time based on the raw acceleration of the three axes, (iv) determi-
nation of MAL detection of sustained functioning of the acceler-
ometer by means of abnormal high accelerations incompatible with 
human movement (i.e., related to device malfunctioning), (v) im-
putation of non-wear time and abnormal high accelerations, (vi) 
identification of waking and sleeping time based on the automa-
tized algorithm guided by the participants’ daily reports [26], and 
(vii) estimation of sedentary time and the time spent in light PA, 
moderate PA, vigorous PA, and moderate to vigorous PA using age-
specific cut-points for a wrist-worn accelerometer, for Euclidean 
Norm Minus One (ENMO) [27]. We measured the mean ENMO 
(mg) during waking time, which is considered an overall indicator 
of the PA (overall PA). For the analyses we only included the par-
ticipants who wore the accelerometers for ≥ 16 h/day during at 
least 4 days (including at least 1 weekend day).
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Faecal microbiota analyses
Stool collection and DNA extraction
The participants collected approximately 50 g of a faecal sample in 
plastic sterile containers, which were transported in portable coolers 
to the research centre. Faecal samples were stored at -80°C until 
extraction of DNA. The QIAamp DNA Stool Mini Kit (QIAGEN, Bar-
celona, Spain) was used for extraction of DNA, following the manu-
facturer’s instructions. The samples were incubated at 95ºC to ensure 
lysis of both gram-positive and gram-negative bacteria. Then, we 
quantified DNA with a NanoDrop ND1000 spectrophotometer (Ther-
mo Fisher Scientific, DE, USA). Finally, DNA purity was determined 
by measuring the ratio of absorbance at A260/280  nm and 
A260/230 nm.

Sequencing analysis
DNA extracted was amplified by polymerase chain reaction (PCR) 
by primer pairs – forward primer (5’CCTACGGGNGGCWGCAG3’) and 
reverse primer (5’GACTACHVGGGTATCTAATCC3’) – targeting the 
V3 and V4 hypervariable regions of the bacterial 16S rRNA gene. 
All PCRs were executed in 25 µL reaction volumes incorporating 
12.5 µL of 2X KAPA HiFi Hotstart ready mix (KAPA Biosystems, 
Woburn, MA, USA), 5 µL of each forward and reverse primer (1 µM) 
and 2.5 µL of extracted DNA (10 ng) under the following cycling 
circumstances: (a) denaturation at 95°C for 3 min, (b) cycles of 
denaturation at 95°C for 30 s, (c) annealing at 55ºC for 30 s, (d) 
elongation at 72ºC for 30 s , (e) a final extension at 72°C for 5 min. 
To purify the PCR products from free primers and primer dimers we 
used AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA). 
Next, the index PCR attached dual indices and Illumina sequencing 
adapters using the Nextera XT Index Kit (Illumina, San Diego, CA, 
USA), on a thermal cycler using the requirements previously men-
tioned. After that, AMPure XP beads (Beckman Coulter, Indianapolis, 
IN, USA) were used for purification of the pooled PCR products. The 
resultant amplicons were sequenced at MiSeq (Illumina, USA), using 
a paired-end (2 × 300 nt) Illumina MiSeq sequencing system (Illu-
mina, San Diego, CA, USA).

Bioinformatics analysis
We analysed the FASTQ files with the “dada2” [28] package in 
R software, obtaining 11,659,014 paired ends with an average of 
126,728 ± 33,395 reads per sample. The cut-off of 10,000 reads 
was surpassed for all samples. Samples were resampled to a mini-
mum sequencing depth of 30,982 reads using the “phyloseq” [29] 
package in R software, returning 11,158 phylotypes.

The “Classifier” function from the Ribosomal Database Project 
(RDP) was used to assign the taxonomic affiliation of phylotypes, 
based on the naïve Bayesian classification [30] with a pseudo-boot-
strap threshold of 80%. We obtained a total of 209 genera belong-
ing to 16 different phyla. The “seqmatch” [31] function from RDP 
was performed to define the discriminatory power of each sequence 
read with the purpose of annotating species assignments; we 

executed annotation according to previously published criteria [32]. 
Microbial communities were analysed at different taxonomic levels 
(phylum to genus), calculating relative abundances, expressed as 
percentages.

We performed the analyses with those bacteria with more than 
0.5% on average in their relative abundance.

Next, alpha and beta diversities were estimated based on the 
identified microbial communities. Alpha diversity takes into account 
the number of different phylotypes and relative abundances of a sin-
gle sample [33], whereas beta diversity shows differences in micro-
bial community composition between individuals, which is the de-
gree to which samples differ from one another [34]. Alpha diversity 
was assessed based on Chao richness, Shannon, inverse Simpson 
and evenness Camargo indexes with the “microbiome” [35] pack-
age in R software. Chao richness estimates diversity according to the 
number of different phylotypes in the community [36]; that is, high-
er Chao richness indicates higher diversity in the community. Shan-
non diversity increases as both the richness and the evenness of the 
community increase [37]; the inverse of Simpson diversity is calcu-
lated from the classical Simpson diversity and indicates richness in 
a community with uniform evenness [38], and evenness Camargo 
determines the equitability of phylotype frequencies in a communi-
ty [39]. Beta diversity was measured quantitatively using permuta-
tional multivariate analysis of variance (PERMANOVA) based on 
Bray-Curtis dissimilarity.

Anthropometric and body composition measurements
Participants’ weight and height were measured, without shoes and 
wearing the standard clothes, using a SECA scale and stadiometer 
(model 799, Electronic Column Scale, Hamburg, Germany). Body 
mass index (BMI) was calculated as weight (kg)/height (m2). Body 
composition was evaluated by dual energy X-ray absorptiometry 
(DEXA, HOLOGIC, Discovery Wi, Marlborough, MA). The lean mass 
index (LMI) and fat mass index (FMI) were calculated as lean body 
mass and fat body mass, respectively, in kg, divided by height in m2. 
The fat mass percentage was determined as the body fat mass di-
vided by the total body mass and multiplied by 100.

Cardiometabolic profile
Fasting blood samples were collected for assessment of the cardio-
metabolic profile. Serum glucose, total cholesterol, high density li-
poprotein-cholesterol (HDL-C) and triglycerides were measured fol-
lowing standard methods using an AU5832 automated analyser 
(Beckman Coulter Inc., Brea CA, USA). Low-density lipoprotein 
cholesterol (LDL-C) was estimated as: [total cholesterol – HDL-C – 
(triglycerides/5)], in mg/dL. Serum insulin was measured using the 
Access Ultrasensitive Insulin chemiluminescent immunoassay kit 
(Beckman Coulter Inc., Brea CA, USA). The homeostatic model as-
sessment for insulin resistance (HOMA-IR) index was calculated as 
(insulin (µU/mL) × glucose (mmol/L)/22.5.
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multiple testing to control the false discovery rate (FDR, shown as 
q-values) [48]. The level of significance was set at P < 0.05 and 
q < 0.05. R software (V.3.6.0; http://www.r-project.org) and 
GraphPad Prism version 8.0.0 for Windows (GraphPad Software, 
San Diego, California, USA, (http://www.graphpad.com) were used 
for the statistical analysis and graphical plots.

RESULTS 
Characteristics of participants
A total of 92 participants had data from analysis of faecal microbiota 
diversity and composition, but only 88 participants (24 men, 
age = 22.0 ± 2.0; and 64 women, age = 21.6 ± 2.0) had valid PA 
measurements (as they wore the accelerometer for < 16 h/day during 
at least 4 days), who were finally included in the analyses. Ta-
ble 1 shows the descriptive characteristics of the included participants 
(age 21.7 (19.8–23.9) years and BMI 23.6 (21.6–28.1 kg/m2)), of 
whom 72.7% were women. We performed tertiles of overall PA and 
the time spent in vigorous PA and we observed that, generally, body 
composition, dietary intake and cardiometabolic profile were similar 
across them (Table S1), with the exception of protein intake and 
glucose levels (P = 0.018 and P = 0.003, respectively; Table S1).

Relationship between physical activity and faecal microbiota di-
versity
Overall PA and the time spent in vigorous PA were positively corre-
lated with alpha diversity indexes, more specifically with Shannon 

Dietary assessment
Dietary intake was registered using three non-consecutive 24-hour 
recalls, 2 weekdays and a weekend day. These 24-hour recalls were 
performed in the laboratory via face-to-face interviews with dietitians. 
To improve the accuracy of food quantification, we used coloured 
photographs of different portion sizes of food during the inter-
views [40]. All 24-hour recalls were analysed for total energy (kcal), 
fat, proteins, carbohydrates, and fibre intake (g) by EvalFINUT soft-
ware, which is based on the United States Department of Agriculture 
(USDA) and “Base de Datos Española de Composición de Alimentos” 
(BEDCA) databases.

Statistical analysis
This is a secondary study derived from the ACTIBATE trial [41]; 
therefore, there is not a sample size calculation for this study. Data 
normality was explored using the D’Agostino & Pearson omnibus, 
visual histograms and Q-Q plots (data not shown). None of the 
variables followed a normal distribution; therefore data were pre-
sented as median ± interquartile range and non-parametric tests 
were used for all analyses. Moreover, no sex interaction was de-
tected (all P > 0.05), so both sexes were pooled together. Spear-
man correlations were performed to investigate the correlation 
between the PA variables and faecal microbiota diversity, using the 
“psych” [42] and “corrplot” [43] packages in R software. Since 
faecal microbiota diversity can be modified by several factors in-
cluding sex [44], BMI [45] and dietary intake [46], we repeated 
the aforementioned correlations adjusted for sex, BMI and dietary 
intake in separate models (data not shown). Moreover, we re-
peated this analysis by adjusting for accelerometer non-wear time 
and glucose levels in separate models (data not shown) as pos-
sible confounders of PA variables. Overall PA and the time spent 
in vigorous PA were computed as tertiles according to number of 
participants with SPSS (SPSS v. 22.0, IBM SPSS Statistics, IBM 
Corp. Armonk, NY), because they were the only variables with 
a significant correlation with faecal microbiota diversity. The tertiles’ 
values for overall PA were low (13.45–29.44 mg), intermediate 
(30.02–35.41 mg), and high (35.49–67.10 mg), whereas for the 
time spent in vigorous PA the values were low (0.02–0.83 min/day), 
intermediate (0.87–2.67 min/day), and high (2.75–14.40 min/day). 
Tertiles of overall PA and the time spent in vigorous PA were com-
pared using one-way PERMANOVA with 9,999 permutations for 
significance testing with the Paleontological Statistics (Past3) soft-
ware [47] for the calculation of beta diversity. Kruskal-Wallis tests 
were performed to investigate whether there were significant dif-
ferences in body composition, dietary intake and cardiometabolic 
profile as well as faecal microbiota alpha diversity and composition 
outcomes across tertiles of overall PA and the time spent in vigor-
ous PA. Analysis of covariance was used to compare the relative 
abundance of genera across tertiles of the time spent in vigorous 
PA adjusted for protein intake with the data transformed by Blom’s 
formula. All P values were corrected by Benjamini and Hochberg 

FIG. 1. Spearman correlation of physical activity variables with 
faecal microbiota diversity. Boxes only represent the statistically 
significant (P < 0.05) correlations and the values within the boxes 
show the Spearman correlation coefficient. Blue boxes indicate 
a positive correlation whereas red squares indicate a negative 
correlation between physical activity variables and faecal microbiota 
diversity indexes. mg: milli-gravitational units; PA: physical activity.
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TABLE 1. Descriptive characteristics of the participants.

All (N = 88) Men (N = 24) Women (N = 64)

Age (years) 21.7 (19.8–23.9) 22.0 (19.8–24.5) 21.6 (19.8–23.7)

Body composition

Body mass index (kg/m2) 23.6 (21.6–28.1) 25.8 (22.8–32.5) 23.3 (21.0–27.4)

Lean mass index (kg/m2) 13.9 (12.6–15.7) 17.4 (15.3–18.4) 13.2 (12.5–14.3)

Fat mass index (kg/m2) 8.7 (6.3–11.5) 7.9 (4.5–11.3) 9.2 (6.5–11.5)

Fat mass (%) 36.7 (31.2–42.6) 32.5 (20.8–37.1) 39.3 (32.9–42.8)

Sedentary and physical activity time 

Non wear time (min/week) 8.6 (0.0–22.2) 8.3 (0.0–28.9) 8.6 (0.0–22.2)

Overall PA (mg) 31.8 (27.2–37.2) 31.0 (24.8–35.3) 32.8 (28.2–37.4)

Sedentary Time (min/day) 785.2 (753.2–820.7) 798.8 (770.0–837.7) 779.2 (752.6–820.2)

Light PA (min/day) 113.6 (99.2–139.0) 109.8 (90.7–124.2) 118.8 (99.7–145.3)

Moderate PA (min/day) 90.0 (67.9–109.5) 84.1 (57.7–103.1) 93.1 (69.7–113.1)

Vigorous PA (min/day) 1.2 (0.7–3.8) 1.3 (0.5–3.3) 1.2 (0.7–4.6)

Moderate to Vigorous PA (min/day) 91.3 (70.5–111.3) 86.3 (58.1–104.6) 95.6 (72.2–116.4)

Dietary intake

Energy intake (kcal/day) 1847.7 (1580.8–2184.4) 2085.2 (1783.3–2641.3) 1798.2 (1553.6–2090.2)

Fat (g/day) 84.5 (70.0–100.2) 97.8 (71.5–111.8) 82.1 (69.2–96.7)

Proteins (g/day) 72.6 (61.4–90.9) 102.2 (75.3–118.9) 67.0 (59.8–79.4)

Carbohydrates (g/day) 198.2 (159.3–229.6) 200.4 (172.5–244.9) 198.2 (149.2–226.2)

Fiber (g/day) 16.2 (11.7–19.8) 16.3 (13.4–20.5) 16.2 (11.2–19.4)

Cardiometabolic profile

Glucose (mg/dL) 87.0 (84.0–92.0) 91.0 (85.0–97.0) 87.0 (84.0–92.0)

Insulin (µUI/mL) 6.7 (4.9–10.7) 6.9 (4.8–12.4) 6.7 (4.9–9.5)

HOMA index 1.4 (1.1–2.4) 1.5 (1.0–3.0) 1.4 (1.1–2.2)

Total Cholesterol (mg/dL) 161.0 (141.5–189.0) 153.0 (139.0–174.0) 166.0 (143.0–197.0)

HDL-C (mg/dL) 51.0 (46.0–58.3) 46.0 (40.0–51.0) 53.0 (48.0–63.0)

LDL-C (mg/dL) 94.0 (78.0–114.0) 90.0 (81.0–104.0) 96.0 (78.0–114.0)

Triglycerides (mg/dL) 71.0 (52.8–106.3) 77.0 (60.0–115.0) 68.0 (52.0–98.0)

Faecal microbiota

Alpha diversity indexes
Richness Chao 391.6 (339.8–508.1) 374.1 (333.9–448.1) 423.5 (344.1–538.7)

Shannon diversity 4.2 (4.0–4.5) 4.2 (4.0–4.5) 4.3 (4.0–4.5)

Inverse Simpson diversity 31.7 (23.1–42.7) 31.7 (22.5–49.1) 31.7 (23.2–41.5)

Evenness Camargo 0.2 (0.2–0.3) 0.2 (0.2–0.3) 0.2 (0.2–0.3)

Composition (Phylum)
Actinobacteria (%) 1.1 (0.6–1.9) 1.1 (0.4–1.7) 1.1 (0.6–2.2)

Bacteroidetes (%) 41.3 (34.7–44.8) 41.8 (39.9–45.2) 40.9 (34.3–44.8)

Firmicutes (%) 47.2 (42.1–52.5) 48.7 (43.3–52.0) 45.6 (41.3–53.1)

Proteobacteria (%) 5.1 (3.8–8.2) 6.7 (4.2–8.8) 4.6 (3.5–7.3)

Verrucomicrobia (%) 0.1 (0.0–2.0) 0.0 (0.0–0.8) 0.2 (0.0–3.5)

Data are presented as median (interquartile range). BMI: body mass index; FMI: fat mass index; HDL-C: high-density lipoprotein 
cholesterol; HOMA index: homeostatic model assessment index; LDL-C: low-density lipoprotein cholesterol; LMI: Lean mass index; 
mg: mili-gravitational units; PA: Physical activity.
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TABLE S1. Characteristics of participants according to tertiles of overall PA and the time spent in vigorous PA.

Overall PA (mg) Time spent in vigorous PA (min/day)

Low
(13.5–29.4)  
n = 29

Intermediate
(30.0–35.4) 
n = 30

High
(35.5–67.1)  
n = 29

P
Low

(0.0–0.8) 
n = 29

Intermediate
(0.9–2.7) 
n = 30

High
(2.8–14.4) 
n = 29

P

Age (years) 22.3 ± 2.5 22.0 ± 2.0 21.6 ± 2.5 0.461 22.3 ± 2.3 22.2 ± 2.3 21.4 ± 2.2 0.239

Sex, N 0.501 0.555

Men 10 8 6 8 10 6

Women 19 22 23 21 20 23

Body composition

BMI (kg/m2) 25.6 ± 5.4 24.2 ± 4.7 25.2 ± 4.2 0.548 24.5 ± 5.0 25.7 ± 4.8 24.8 ± 4.6 0.531

LMI (kg/m2) 14.4 ± 2.5 13.9 ± 2.3 14.9 ± 2.0 0.150 14.0 ± 2.3 14.5 ± 2.2 14.6 ± 2.4 0.380

FMI (kg/m2) 9.3 ± 3.4 8.7 ± 2.7 8.9 ± 3.3 0.805 9.0 ± 3.5 9.1 ± 3.0 8.8 ± 2.9 0.946

Fat mass (%) 37.1 ± 7.7 36.7 ± 6.5 35.4 ± 8.9 0.823 36.8 ± 8.5 36.6 ± 7.5 35.7 ± 7.3 0.734

Dietary intake

Energy intake (kcal/day) 1985 ± 597.1 1805 ± 382.1 1992 ± 453.2 0.294 1827 ± 602.5 2055 ± 412.1 1892 ± 411.0 0.080

Fat (g/day) 91.0 ± 36.7 81.4 ± 21.9 89.3 ± 22.8 0.344 82.6 ± 37.2 92.1 ± 23.8 86.6 ± 20.0 0.171

Proteins (g/day) 78.9 ± 27.2 75.2 ± 19.6 80.6 ± 23.0 0.597 71.3 ± 24.6* 85.2 ± 22.4* 77.9 ± 21.3 0.018

Carbohydrates (g/day) 208.6 ± 61.5 188.1 ± 57.5 211.7 ± 67.3 0.215 196.7 ± 67.6 216.0 ± 51.5 194.8 ± 67.0 0.129

Fiber (g/day) 16.9 ± 6.2 16.8 ± 8.0 17.0 ± 5.1 0.529 16.6 ± 7.2 17.7 ± 6.7 16.4 ± 5.6 0.654

Cardiometabolic profile

Glucose (mg/dL) 89.2 ± 7.5 88.7 ± 6.1 86.8 ± 6.4 0.502 89.6 ± 6.3* 90.3 ± 7.0† 84.7 ± 5.5*† 0.003

Insulin (µUI/mL) 10.8 ± 9.3 7.4 ± 3.3 7.5 ± 4.3 0.149 9.4 ± 6.2 9.3 ± 8.1 7.0 ± 3.9 0.139

HOMA index 2.5 ± 2.6 1.6 ± 0.8 1.6 ± 1.0 0.132 2.1 ± 1.6 2.2 ± 2.3 1.5 ± 0.9 0.059

Total Cholesterol (mg/dL) 171.8 ± 38.1 167.6 ± 32.6 167.0 ± 42.1 0.757 163.0 ± 32.9 179.9 ± 47.2 163.3 ± 27.4 0.370

HDL-C (mg/dL) 51.4 ± 14.1 54.4 ± 9.3 52.6 ± 12.1 0.241 51.0 ± 13.0 55.2 ± 12.6 52.3 ± 9.8 0.448

LDL-C (mg/dL) 100.8 ± 29.1 97.5 ± 27.0 98.7 ± 29.1 0.893 95.0 ± 25.6 105.4 ± 34.1 96.5 ± 23.2 0.599

Triglycerides (mg/dL) 100.6 ± 65.2 89.6 ± 63.4 80.7 ± 63.0 0.068 84.6 ± 46.9 113.8 ± 91.9 72.3 ± 27.5 0.242

Data are presented as means ± standard deviations. Symbol (*) indicates significant differences between low and high tertiles, whereas 
symbol (†) shows significant differences between intermediate and high tertiles by means of Kruskal-Wallis. BMI: body mass index; 
FMI: fat mass index; HDL-C: high-density lipoprotein cholesterol; HOMA index: homeostatic model assessment index; LDL-C: low-
density lipoprotein cholesterol; LMI: Lean mass index; mg: mili-gravitational units; PA: Physical activity.

and inverse Simpson diversity indexes (all rho ≥ 0.23, P ≤ 0.034; 
Fig. 1). Only the time spent in vigorous PA was positively correlated 
with the Chao richness index (rho = 0.24, P = 0.023; Fig. 1). 
However, we did not observe any significant correlation between 
other PA variables and alpha diversity indexes (all P > 0.05; Fig. 1). 
The results were similar when sex, BMI, energy and macronutrient 
intake, as well as accelerometer non-wear time and glucose levels, 
were included as confounders in separate models (data not shown). 
Moreover, we found that individuals with high time spent in vigorous 
PA had a higher Chao richness, Shannon and inverse Simpson di-
versity indexes than individuals with low and intermediate time spent 
in vigorous PA (all P ≤ 0.038; data not shown). However, there were 
no differences across tertiles of overall PA and the time spent in 

vigorous PA in the beta diversity at any taxonomic levels (all P ≥ 0.060; 
Table 2).

Relationship between physical activity variables and faecal mi-
crobiota composition
We analysed the differences across tertiles of overall PA and the 
time spent in vigorous PA on faecal microbiota composition at all 
taxonomic levels. There were no significant differences across ter-
tiles of overall PA on the relative abundance of all bacteria at the 
different taxonomic levels (all P > 0.05; Fig. 2). Similarly, we 
observed no differences across tertiles of time spent in vigorous 
PA on the relative abundance of bacteria at the phylum taxo-
nomic level (all P ≥ 0.318; Fig. 3A). However, we observed that 
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FIG. 2. Faecal microbiota composition according to tertiles of overall physical activity (PA) levels (L: low, 13.45–29.44 mg; I: 
intermediate, 30.02–35.41 mg; H: high, 35.49–67.10 mg). Panels indicate relative abundance of the faecal microbiota at phylum 
(A), class (B), order (C), family (D) and genus (E) taxonomic levels according to tertiles of overall PA. Stacked bar represents percentage 
abundance. Kruskal-Wallis test was used to test for each pairwise comparison, correcting for multiple comparisons FDR (q < 0.05) 
(GraphPad Prism 8.00).
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FIG. 3. Faecal microbiota composition according to tertiles of the time spent in vigorous physical activity (PA) (L: low, 0.02–0.83 min/day; 
I: intermediate, 0.87–2.67 min/day; H: high, 2.75–14.40 min/day). Panels indicate relative abundance of the faecal microbiota at 
phylum (A), class (B), order (C), family (D) and genus (E) taxonomic levels according to tertiles of the time spent in vigorous PA. 
Stacked bar represents percentage abundance. Symbols * and ○ mean statistical significance differences between low and high time 
spent in vigorous PA, and symbol • represents statistical significance differences between low and intermediate time spent in vigorous 
PA. Kruskal-Wallis test was used to test for each pairwise comparison, correcting for multiple comparisons FDR (q < 0.05) (GraphPad 
Prism 8.00).
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individuals with low time spent in vigorous PA had a higher relative 
abundance of the Gammaproteobacteria class (Proteobacteria 
phylum) than individuals with intermediate time spent in vigorous 
PA (q = 0.021, FDR = q-value; Fig. 3B). Moreover, individuals 
with high time spent in vigorous PA had higher relative abundance 
of unclassified Firmicutes class (Firmicutes phylum) and Porphy-
romonadaceae family (Bacteroidetes phylum) than individuals 
with low time spent in vigorous PA (q = 0.027, and q = 0.031, 
respectively; Fig. 3B and D). Finally, we found that individuals with 
intermediate time spent in vigorous PA had a higher relative abun-
dance of the Alistipes genus (Bacteroidetes phylum) than indi-
viduals with low time spent in vigorous PA (q = 0.015; Fig. 3E). 
Interestingly, these same participants presented differences in 
protein intake (q = 0.011; Table S1). Thus, we repeated the 
analyses after adjusting for the protein intake and the differences 
in the relative abundance of the Alistipes genus disappeared 
(P = 0.080; Table S2).

DISCUSSION 
In the present study, overall PA and the time spent in vigorous PA 
were found to be positively correlated with alpha diversity indexes in 
young adults. Moreover, there were differences across the tertiles of 
time spent in vigorous PA in the relative abundance of the Gam-
maproteobacteria class (Proteobacteria phylum), Porphyromonada-
ceae family and Alistipes genus (both Bacteroidetes phylum). These 
findings indicate that PA may play a role in faecal microbiota diver-
sity and composition in young adults, although further studies are 
needed to confirm these findings.

Our results showing the positive correlation between PA and al-
pha diversity agree with recent findings [14, 49, 50]. However, the 
mechanisms by which PA may promote higher faecal microbiota di-
versity are unknown. A possible explanation could be the changes in 
the gastrointestinal tract due to intrinsic adaptations of performing 
PA [51]. Interestingly, from an ecological perspective, microbial di-
versity may be a key factor in allowing an ecosystem to continue op-
erating properly [52]. In fact, greater species diversity has been as-
sociated with a healthy phenotype’s host [53]. This is due to the 

potential effects that the bacteria can exert via metabolites, such as 
short-chain fatty acids and neurotransmitters locally and extra-intes-
tinal tissues in the host [54].

Our data showed that the participants with low time spent in vig-
orous PA had higher relative abundance of the Gammaproteobacte-
ria class than individuals with higher time spent in vigorous PA. The 
relative abundance of the Gammaproteobacteria class (Proteobac-
teria phylum) has been reported to be increased in obese mice [55] 
and individuals with obesity [56], and disease states such as meta-
bolic diseases and intestinal inflammation [57]. In fact, many com-
mon human pathogens, known as sulphur producers [58], are found 
in the Gammaproteobacteria class, for example, Escherichia, Shi-
gella, and Yersinia genera [58]. In agreement with our findings, sed-
entary women and participants with low cardiorespiratory fitness [59] 
had a higher relative abundance of the Gammaproteobacteria class 
than active women and participants with high cardiorespiratory fit-
ness, respectively. Similarly, a  very recent study performed 
in > 8,000 individuals using accelerometers observed that PA 

TABLE 2. Beta diversity across tertiles of overall PA and the time 
spent in vigorous PA at all taxonomic levels.

Tertiles of overall PA 
(mg)

Tertiles of the time spent 
in vigorous PA (min/day)

Taxonomic 
levels

Pseudo-F P Pseudo-F P

Phylum 0.502 0.789 0.967 0.443

Class 0.926 0.508 1.224 0.262

Order 0.959 0.475 1.282 0.221

Family 1.132 0.306 1.476 0.106

Genus 0.968 0.492 1.524 0.060

PERMANOVA using 9,999 permutations for significance testing 
(p-value < 0.05). mg: mili-gravitational units; PA: physical activity; 
Pseudo-F: statistic, larger number indicate greater separation [64] 
across tertiles of total PA and vigorous PA levels.

TABLE S2. Differences in the relative abundance of Alistipes genus across tertiles of the time spent in vigorous PA.

Time spent in vigorous PA (min/day)

Low
(0.0–0.8)
n = 29

Intermediate 
(0.9–2.7)
n = 30

High
(2.8–14.4)

n = 29

P for  
model 1

P for  
model 2

Alistipes genus (%) 4.3 ± 2.9* 6.3 ± 3.3* 5.2 ± 3.0 0.026 0.080

Data are presented as means ± standard deviations. Symbol (*) indicates significant differences between low and intermediate tertiles. 
Model 1: P value from Kruskal Wallis test. Model 2: P values were obtained from one-way analyses of variance adjusted for protein 
intake (g) with data transformed by Blom’s formula. PA: Physical activity.
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levels were associated differently with faecal microbiota composi-
tion, suggesting that the higher the PA level is, the higher is the di-
versity [60]. Moreover, several studies have shown that exercise 
seems to decrease the relative abundance of the Gammaproteobac-
teria class [61, 62]. Thus, our results suggest that performing less 
than 1 min/day of vigorous PA could be related to having a higher 
relative abundance of the Gammaproteobacteria class, bacteria con-
sidered health-detrimental.

In contrast, we observed that individuals with high and interme-
diate time spent in vigorous PA had a higher relative abundance of 
the Porphyromonadaceae family and Alistipes genus (both Bacte-
roidetes phylum) than individuals with lower time spent in vigorous 
PA. Accordingly, in a cross-sectional study of professional martial arts 
athletes, the relative abundance of the Porphyromonadaceae family 
was higher in the higher-level athletes in comparison with the lower-
level athletes [63]. Moreover, regular swimming training [64] and vol-
untary wheel running [65], both in mice, were able to increase the 
relative abundance of the Porphyromonadaceae family. In fact, it has 
recently been found that lean individuals had a significantly higher 
relative abundance of the Porphyromonadaceae and Rikenellaceae 
families than individuals with obesity [45]. Of note is the fact that the 
Alistipes genus belongs to the Rikenellaceae family. In resistance-
trained mice, the relative abundance of the Alistipes genus was pos-
itively correlated with resistance performance [66]. In humans, the 
relative abundance of the Alistipes genus is increased after consum-
ing an animal-based diet intake, rich in protein, for 5 days [64]. Cer-
tain species that belong to the Alistipes genus are involved in amino 
acid metabolism; specifically, they can hydrolyse tryptophan to in-
dole [67]. Since tryptophan is an essential amino acid that cannot be 
produced by animal cells, humans rely on dietary intake, mainly pro-
teins, for incorporating it into the organism [68]. In our study, the in-
dividuals with intermediate time spent in vigorous PA had higher pro-
tein intake than individuals with low time spent in vigorous PA. In 
fact, when the protein intake was included as a confounder, the dif-
ferences in the relative abundance of the Alistipes genus between 
these individuals disappeared. Considering the relationship between 
the Alistipes genus and protein metabolism [67], and the results ob-
served in the present study, it seems possible that these differences 
were explained by protein intake. Therefore, our data suggest that 
spending time on vigorous PA, in the range 3–14 min/day, could be 
related to having a higher relative abundance of Porphyromonadace-
ae family bacteria, whereas the protein intake seems to modulate the 
relative abundance of the Alistipes genus in individuals with interme-
diate time spent in vigorous PA. Even so, the possible effect of time 
spent in vigorous PA on the relative abundance of the Gammaproteo-
bacteria class, Porphyromonadaceae family and Alistipes genus de-
serves further analysis.

Limitations and strengths
A limitation to consider in the current study is that it followed a cross-
sectional design, which prevents a causal interpretation of our results. 

Well-designed randomized controlled trials should be carried out to 
elucidate the role of PA in faecal microbiota diversity and composi-
tion. In addition, we do not know whether our findings apply to 
older people or individuals presenting any metabolic disease. As for 
strengths of this study, we sequenced the microbiota composition 
using the latest technology (Illumina platform) and annotations were 
made with RDP to the genus taxon level. Moreover, PA was objec-
tively measured by accelerometry during 7  consecutive days 
(24 h/day) [21], and we used a cut-point-free approach to assess 
overall PA since PA intensities estimated from cut-points might be 
biased by poor calibration studies [69].

CONCLUSIONS 
Our data showed that overall PA and time spent in vigorous PA were 
positively correlated with faecal microbiota diversity in young adults. 
Moreover, the individuals with low time spent in vigorous PA pre-
sented higher relative abundance of the Gammaproteobacteria class, 
whereas the individuals with high time spent in vigorous PA had 
higher relative abundance of the Porphyromonadaceae family. Alto-
gether, these findings suggest that PA, especially of vigorous inten-
sity, is related to faecal microbiota diversity and the Gammaproteo-
bacteria class and Porphyromonadaceae family in young adults. 
Further studies are needed to confirm this relationship.
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