en ENGLISH
eISSN: 2956-7548
ISSN: 1734-1558
Forum Ortodontyczne / Orthodontic Forum
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Zeszyty specjalne Rada naukowa Recenzenci Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Opłaty publikacyjne Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
4/2021
vol. 17
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

Metody wspomagające leczenie ortodontyczne – przegląd dokonany na podstawie piśmiennictwa

Justyna Poddębniak
,
Ewa Sobieska
,
Anna Julia Masłowska-Kasowicz
,
Małgorzata Zadurska

Forum Ortod 2021; 17 (4): 286-300
Data publikacji online: 2022/01/15
Plik artykułu:
Pobierz cytowanie
 
Metryki PlumX:
 
1. Yamaguchi M, Fukasawa S. Is inflammation a friend or foe for orthodontic treatment? Inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement. Int J Mol Sci 2021; 22: 2388.
2. Yina Li, A. Jacox L, Shannyn H. Little, Ching-Chang Ko. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018; 34: 207-14.
3. Kirshnan V, Davidovitch Z. Cellular, molecular and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 2006; 129: 469-32.
4. Ngan PW, Saito S, Saito M, Lanese R, Shanfeld J, Davidovitch Z. The interactive effects of mechanical stress and interleukin-1 beta on prostaglandin E and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch Oral Biol 1990; 35: 717-25.
5. Eltimamy A, Aly El-Sharaby F, Eid F, El-Dakrory A. The effect of local pharmacological agents in acceleration of orthodontic tooth movement: A systematic review. Maced J Med Sci 2019; 7: 882-6.
6. Bartzela T, Turp JC, Mortschall E, Maltha JC. Medication effects on the rate of orthodontic tooth movement: A systematic literature review. Am J Orthod Dentofacial Orthop 2009; 135: 16-26.
7. Arqub SA, Gandhi V, Iverson MG, Ahmed M, Kuo CL, Mu J, Dutra E, Uribe F. The effect of the local administration of biological substances on the rate of orthodontic tooth movement: a systematic review of human studies. Progr in Orthod 2021; 1: 22-5.
8. Dhebi H, Azaroual MF, Zaoudi F, Halimi A, Benyahia H. Therapeutic efficacy of self-ligating brackets: A systematic review. Int Orthod 2017; 15: 297-311.
9. Aras I, Unal I, Huniler G, Aras A. Root resorption due to orthodontic treatment using self-ligating and conventional brackets: A conebeam computed tomography study. J O rofac O rthop 2 018; 7 9: 181-90.
10. Szczupakowski A, Reiman S, Dirk C, Keilig L, Weber A, Jager A, Bourauel C. Friction behawior of self-ligating and conventional brackets with different ligature systems. J Orofac Orthop 2016; 77: 287-95.
11. Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: a systematic review and meta-analysis. J Dent 2014; 42: 1300-19.
12. Guram G, Reddy RK, Dharmasi AM, Ismail PM, Mishra S, Prakashkumar MD. Evaluation of Low-Level Laser Therapy on orthodontic tooth movement: a randomized control study. Contemp Clin Dent 2018; 9: 105-9.
13. Qamruddin I, Alam MK, Mahrhoof V, Fida M, Khamis MF, Husein A. Photobiostymulatory effect of a single dose of Low-Level Laser on orthodontic tooth movement and pain. Pain Res Manag 2021; 10: 1-5.
14. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. The effect of Low-Level Laser Therapy on the acceleration of orthodontic tooth movement. J Lasers Med Sci 2020; 11: 204-11.
15. Nahas AZ, Samara SA, Rastegar-Lari TA. Decrowding of lower anterior segment with and without photomodulation: a single center, randomized clinical trial. Lasers Med Sci 2017; 32: 129-35.
16. Cornshaw M, Parker S, Anagnostoni E, Lynch E. Systematic review of orthodontic treatment management with photobiomodulation Therapy. Photomodul Photomed Laser Surg 2019; 37: 862-8.
17. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 2006; 9: 38-43.
18. Marquezan M, Bolognese AM, Araujo MT. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg 2010; 28: 757-62.
19. Chung SE, Tompson B, Gong SG. The effects of light emitting diode phototherapy on rate of orthodontic tooth movement a split mouth controlled clinical trial. J Orthod 2015; 42: 274-83.
20. Horigome Y, Sugimori T, Shimizu M, Hikida T, Suemitsu M, Kuyama K, Kasai K. Vibration stimuli accelerate orthodontic tooth movement by TNF-α and activating cel cycles of PDL. Int J Oral-Med Sci 2020; 19: 19-29.
21. Wilcko MT, Wilcko WM, Murphy KG, Carroll WJ, Fergusson DJ, Miley DD, Bouquet JE. Full-Thickness flap/subepithelial conective tissue grafting with intramarrow penetrations: three case reports of lingual root couverage. Int J Periodontis Resorative Dent 2005; 25: 561-9.
22. Miles P. Accelerated orthodontic treatment – what’s the evidence? Aust Dent J 2017; 62; 1: 63-70.
23. Sanjideh PA, Rossouw PE, Campell PM, Opperman LA, Buschang PH. Tooth movements in foxhounds after one or two alveolar corticotomies. Eur J Orthod 2010; 32: 106-13.
24. Lee W. Corticotomy for orthodontic tooth movement. J Korean Assoc Maxillofac Surg 2018; 44: 251-8.
25. Hassan AH, Saeed SH, Al.- Maghlouth BA, Bahammam MA, Linjawi AL, El-Bialy TH. Corticotomy-assisted orthodontic treatment. A systematic review of the biological basis and clinical effectiveness. Saudi Med J 2015; 36: 794-801.
26. Viwattanatipa N, Charnchairerk S. The effectiveness of corticotomy and piezocision on canine retraction: A systematic review. Korean J Orthod 2018; 48: 200-11.
27. Gibreal O, Hajeer MY, Brad B. Efficacy of piezocision-based flapless corticotomy in the orthodontic correction of severely crowded lower anterior teeth: a randomized controlled trial. Eur J Orthod 2019; 41: 188-95.
28. Mheissen S, Khan H, Samawi S. In piezocizion effective in accelerating orthodontic tooth movement: A systematic review and metaanalysis. PloS One 2020; 15: e0231492.
29. Alikhani M, Raptis M, Zoldan B. Effect of micro-osteoperforations on the rate of tooth movement. Am Orthod Dentofacial Orthop 2013; 144: 639-48.
30. Khundi I, Alam MK, Shaheed S. Micro-osteo perforation effects as an intervention on canine retraction. Saudi Dent J 2019; 32: 15-20.
31. Aboalnaga AA, Salah Fayed MM, El-Ashmawi NA, Soliman SA. Effect of micro-osteoperforation on the rate of canine retraction: a split-mouth randomized controlled trial. Prog Orthod 2019; 20: 21.
32. Alkebsi A, Al-Maaitah E, Al-Shorman H, Abu AE. Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with Class II
33. malocclusion: a randomized controlled clinical trial. Am J Orthod Dentofacial Orthop 2018; 153: 771-85.
34. Santos C, Mecenas P, Aragon M, Normado D. Effects of micro-osteoperforations with Propel system on tooth movement, pain/quality of life, Anchorage loss, and root resorption: a systematic review and meta-analysis. Progr in Orthod 2020; 21: 27.
35. Jones JP, Elnagar MH, Perez DE. Temporary skeletal Anchorage techniques. Oral Maxillofac Surg Clin North Am 2020; 32: 27-37.
36. Melsen B, Dalstra M. Skeletal Anchorage in the past, today and tomorrow. Orthod Fr 2017; 88: 35-44.
37. Becker K. Pliska A, Busch C, Wilmes B, Wolf M, Drescher D. Efficacy of orthodontic mini implants for en masse retraction in the maxilla: a systematic review and meta-analysis. Int Implant Dent 2018; 4: 35.
38. Marzouk ES, Abdallah EM, Kenany WA. Molar intrusion in openbite adults using zygomatic miniplates. Int J Orthod Milwaukee Sommer 2015; 26: 47-54.
39. Gurdan Z, Szalma J. Evaluation of the succes and complication rates of self-drilling orthodontic mini-implants. Niger J Clin Pract 2018; 21: 546-52.
40. Chen YJ, Chang HH, Lin HY, Lai EHH, Hung HC, Yao CCJ. Stability of miniplates and miniscrews used for orthodontic Anchorage: experience with 492 temporary Anchorage devices. Clin Oral Implants Res 2008; 19: 1188-96.
41. Papageorgiou SN, Zogakis JP, Papadopulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: A metaanalysis. Am J Orthod Dentofacial Orthop 2012; 142: 577-95.
42. Kyung HM, Ly NT, Hong M. Orthodontic skeletal anchorage: Up-todate review. Orthod Waves 2017; 76: 123-32.
43. Arqub SA, Gandhi V, Mehta S, Palo L, Upadhyay M, Yadav S. Survival estimates and risk factors for failure of palatal and buccal mini-implants. Angle Orthod 2021; 91: 756-63.
44. Azeem M, Muda M. Failure rates of mini-implants inserted in the retromolar area. Int Orthod 2019; 17: 53-9.
45. Palone MG, Kaitsos R. Orthodontic- periodontal interactions: Orthodontic extrusion in interdisciplinary regenerative treatments. Int Orthod 2018; 16: 217-45.
46. Beauchamp S , R ichman S C, B aldock W , P umphrey B J, S tern J K. Factors Affecting Predictability of buccal bone augumentation in surgically facilitated orthodontic treatment: etiological considerations. Comp Contin Educ Dent 2020; 41: 18-23.
47. Pietruski J. Periodontologiczno-implantologiczna chirurgia plastyczna. Czelej 2014.
48. Pawlaczyk K. Kontrolowana ekstruzja zębów w leczeniu interdyscyplinarnym. Dent Med Probl 2006; 43: 602-5.
49. Sant’Anna EF, Tirre de Souza Araujo M, Nojima LI, Carneiro da Cunha A, Lopes da Silveira B, Marquezan M. High-intensity laser application in orthodontics. Dental Press J Orthod 2017; 22: 99-109.
50. Özbilen ÖE, Yilmaz HN, Köse KN. Orthodontic extrusion with circumferential supracrestal fiberotomy: a report of two cases. Turk J Orthod 2018; 31: 145-9.
51. Al.-Jasser R, Al-Subaie M, Al-Jasser N, Al-Rasheed A. Rotational relapse of anterior teeth following orthodontic treatment and circumferential supracrestal fiberotomy. Saudi Dent J 2020; 32: 293-9.
52. Al-Jasser R, Al-Jewair T, Al-Rasheed A. One-year rotational relapse frequency following conventional circumferential supracrestal fiberotomy. World J Clin Cases 2020; 8: 284-93.
53. Nakajima K, Kunimatsu R, Ando K, Ando T, Hayashi Y, Kihara T, Hiraki T, Tsuka Y, Abe T, Kaku M, Nikawa H, Takata T, Tanne K, Tanimoto K. Comparision of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone narrow mesenchymal stem cells. Biochem Biophys Res Commun 2018; 497: 876-82.
54. Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, Hiraki T, Kimura A, Tanimoto K. Comparative charakterization of stem cells from human exfoliated deciduous teeth dental pulp and bone
55. marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501: 193-8.
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.