1. Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant fo papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2016; 2: 1023-1029.
2.
Das DK, Al-Waheeb SK, George SS, et al. Contribution of immunocytochemical stainings for Galectin-3, CD44, and HBME-1 to fine-needle aspiration cytology diagnosis of papillary thyroid carcinoma. Diagn Cytopathol 2014 ;42: 498-505.
3.
Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Mod Pathol 2016; 29: 698-707.
4.
Abdelwahab K, Abdallah A, Metwally IH, et al. Effect of non-invasive follicular thyroid neoplasm with papillary-like features (NIFTP) terminology on surgical management concepts. Rev Esp Patol 2023; 56: 82-87.
5.
Lloyd RV, Osamura RY, Klöppel G, et al. WHO Classification of Tumours of Endocrine Organs, WHO Classification of Tumours, 4th Edition. Lyon: International Agency for Research on Cancer; 2017, p. 78-80.
6.
Seethala RR, Baloch ZW, Barletta JA, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol 2018; 31: 39-55.
7.
Nikiforov Y, Baloch ZW, Hodak SP, et al. Change in diagnostic criteria for noninvasive follicular thyroid neoplasm with papillary like nuclear features. Jama Oncol 2018; 8: 1125-1126.
8.
Tallini G, Tuttle RM, Ghossein RA, et al. The history of the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2017; 102: 15-22.
9.
French B, Hattier G, Mardekian SK. Utility of tumor capsule thickness as a predictor of invasion in encapsulated follicular variant of papillary thyroid carcinoma and a diagnostic tool for noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Int J Surg Pathol 2020; 28: 13-19.
10.
Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008; 132: 359-372.
11.
Ma H, Xu S, Yan J, et al. The value of tumor markers in the diagnosis of papillary thyroid carcinoma alone and in combination. Pol J Pathol 2014; 65: 202-209.
12.
Barut F, Onak Kandemir N, Bektas S, et al. Universal markers of thyroid malignancies: Galectin-3, HBME-1, and Cytokeratin-19. Endocr Pathol 2010; 21: 80-89.
13.
Cheung CC, Ezzat S, Freemann JL, et al. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 2001; 14: 338-342.
14.
Asa SL. The role of immunohistochemical markers in the diagnosis of follicular patternedlesions of the thyroid. Endocr Pathol 2005; 16: 295-309.
15.
De Matos LL, Del Giglio AB, Matsubayashi CO, et al. Expression of CK-19, Galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol 2012; 7: 97. DOI: https://doi.org/10.1186/1746-1596-7-97.
16.
Mokhtari M, Eftekhari M, Tahririan R, et al. Absent CD56 expression in papillary thyroid carcinoma: a finding of potential diagnostic value in problematic cases of thyroid pathology. J Res Med Sci 2013; 18: 1046-1050.
17.
Prasad ML, Pellegata NS, Huang Y, et al. Galectin-3, fibronectin-1, CITED-1, HBME-1, and Cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 2005; 18: 48-57.
18.
Saleh H A, Jin B, Barnwell J, et al. Utility of immunohistochemical markers in differentiating benign from malignant follicular-derived thyroid nodules. Diagn Pathol 2010; 5: 9. DOI: https://doi.org/10.1186/1746-1596-5-9.
19.
Suster S. Thyroid tumors with a follicular growth pattern: problems in differential diagnosis. Arch Pathol Lab Med 2006; 130: 984-988.
20.
Rivera M, Ricarte-Filho J, Knauf J, et al. Molecularg enotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol 2010; 23: 1191-1200.
21.
Tallini G, Garcia-Rostan G, Herrero A, et al. Downregulation of p27KIP1 and Ki-67/Mib1 labeling index support the classification of thyroid carcinoma into prognostically relevant categories. Am J Surg Pathol 1999; 23: 678-685.
22.
Yıldırım N, Özercan İH. Tiroid Tümörlerinde Prolifere Olan Hücre Nükleus Antijeni (PCNA). S.Ü. Tıp Fak Derg 2001; 17: 87-90.
23.
Figge J, del Rosario AD, Gerasimov G, et al. Preferential expression of the cell adhesion molecule CD44 in papillary thyroid carcinoma. Exp Mol Pathol 1994; 61: 203-211.
24.
Rosai J. Rosai and Ackerman’s Surgical Pathology. 9th ed. Vol I. Mosby; 2004, p. 532-542.
25.
Rossi ED, Faquin WC, Baloch Z, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): update and diagnostic consideration – a review. Endocr Pathol 2019; 30: 155-162.
26.
DeEllis RA, Williams ED. Thyroid and parathyroid tumors: introduction. In: Patology and Genetics of Tumors of Endocrine Organs. Lyon: IARC Press; 2004, p. 51-56.
27.
Tastekin E, Keskin E, Can N, et al. CD56, CD57, HBME-1, CK19, Galectin-3 and p63 immunohistochemical stains in differentiating diagnosis of thyroid benign/malign lesions and NIFTP. Pol J Pathol 2019; 70: 286-294.
28.
Sadiq Q, Sekhri R, Dibaba DT, et al. HBME-1 and CK19 expression in non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) vs other follicular patterned thyroid lesions. World J Surg Oncol 2021; 19: 143. DOI: https://doi.org/10.1186/s12957-021-02258-7.
29.
Elsers DA, Hussein MRA, Osman MH, et al. Challenge in the pathological diagnosis of the follicular – patterned thyroid lesions. Asian Pac J Cancer Prev 2021; 22: 3365-3376.
30.
Hirokawa M, Ito M, Motoi N, et al. Prevalence and diagnostic significance of non-invasive follicular thyroid neoplasm with papillary-like nuclear features in Japan – a multi-institutional study. Pathol Int 2024; 74: 26-32.