Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Multi-phase, multi-ethnic GWAS uncovers putative loci in predisposition to elite sprint and power performance, health and disease

Guan Wang
1
,
Noriyuki Fuku
2
,
Eri Miyamoto-Mikami
2
,
Masashi Tanaka
3
,
Motohiko Miyachi
4
,
Haruka Murakami
5
,
Braxton D. Mitchell
6
,
Errol Morrison
7
,
Ildus I. Ahmetov
8, 9, 10
,
Sportgene Research Group
,
Edward V. Generozov
11
,
Maxim L. Filipenko
12, 13
,
Andrei A. Gilep
14, 15
,
Valentina Gineviciene
16
,
Colin N. Moran
17
,
Tomas Venckunas
18
,
Pawel Cieszczyk
19
,
Wim Derave
20
,
Ioannis Papadimitriou
21
,
Fleur C. Garton
22
,
Sandosh Padmanabhan
23
,
Yannis P. Pitsiladis
24

  1. School of Sport and Health Sciences, University of Brighton, Eastbourne BN20 7SN, United Kingdom
  2. Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
  3. Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
  4. Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
  5. College of Sport and Health Science, Ritsumeikan University, Shiga 525- 8577, Japan
  6. School of Medicine, University of Maryland, Baltimore 21201, MD, United States
  7. Diabetes Association of Jamaica, Kingston 5, Jamaica
  8. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
  9. Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russian Federation
  10. Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russian Federation
  11. Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
  12. Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
  13. Novosibirsk State University, Novosibirsk, Russian Federation
  14. Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
  15. Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry (IBMC), Moscow, Russian Federation
  16. Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius LT-08406, Lithuania
  17. Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, United Kingdom
  18. Lithuanian Sports University, Kaunas LT-44221, Lithuania
  19. Gdansk University of Physical Education and Sport, Gdansk 80-336, Poland
  20. Department of Movement and Sports Sciences, Ghent University, Ghent B-9000, Belgium
  21. Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
  22. Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
  23. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
  24. Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong
Biol Sport. 2025;42(3):141–159
Online publish date: 2025/02/04
Article file
- 14_04483_Article_c.pdf  [2.15 MB]
Get citation
 
PlumX metrics:
 
1. Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, et al. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc. 2009; 41(1):35–73. Epub 2009/01/06. doi: 10.1249/mss.0b013e3 181844179. PubMed PMID: 19123262.
2. Sarzynski MA, Loos RJ, Lucia A, Pérusse L, Roth SM, Wolfarth B, et al. Advances in Exercise, Fitness, and Performance Genomics in 2015. Med Sci Sports Exerc. 2016; 48(10):1906–16. Epub 2016/05/18. doi: 10.1249/mss .0000000000000982. PubMed PMID: 27183119.
3. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017; 8:16015. Epub 20170712. doi: 10.1038/ncomms 16015. PubMed PMID: 29313844; PubMed Central PMCID: PMC5510175.
4. Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, et al. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Transl Med. 2022; 14(647):eabj5557. Epub 20220601. doi: 10.1126/scitranslmed .abj5557. PubMed PMID: 35648809.
5. Bulgay C, Kasakolu A, Kazan HH, Mijaica R, Zorba E, Akman O, et al. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes (Basel). 2023; 14(3). Epub 20230306. doi: 10.3390/genes1403 0660. PubMed PMID: 36980932; PubMed Central PMCID: PMC10048216.
6. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017; 550(7676):345–53. Epub 2017/10/12. doi: 10.1038/nature24286. PubMed PMID: 29019985.
7. Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. Cell. 2019; 177(1):26–31. Epub 2019/03/23. doi: 10.1016/j.cell .2019.02.048. PubMed PMID: 30901543; PubMed Central PMCID: PMC7380073.
8. Peterson RE, Kuchenbaecker K, Walters RK, Chen CY, Popejoy AB, Periyasamy S, et al. Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell. 2019; 179(3):589–603. Epub 20191010. doi: 10.1016/j.cell.2019 .08.051. PubMed PMID: 31607513; PubMed Central PMCID: PMC6939869.
9. Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012; 10(2):117–22. Epub 20120630. doi: 10.5808/gi.2012.10.2.117. PubMed PMID: 23105939; PubMed Central PMCID: PMC3480678.
10. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 308(5720):385–9. Epub 20050310. doi: 10.1126/science.1109557. PubMed PMID: 15761122; PubMed Central PMCID: PMC1512523.
11. Zakharia F, Basu A, Absher D, Assimes TL, Go AS, Hlatky MA, et al. Characterizing the admixed African ancestry of African Americans. Genome Biol. 2009; 10(12):R141. Epub 20091222. doi: 10.1186/gb-2009-10 -12-r141. PubMed PMID: 20025784; PubMed Central PMCID: PMC2812948.
12. Deason ML, Salas A, Newman SP, Macaulay VA, St AMEY, Pitsiladis YP. Interdisciplinary approach to the demography of Jamaica. BMC Evol Biol. 2012; 12:24. Epub 20120223. doi: 10.1186/1471-2148-12-24. PubMed PMID: 22360861; PubMed Central PMCID: PMC3299582.
13. Scott RA, Irving R, Irwin L, Morrison E, Charlton V, Austin K, et al. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc. 2010; 42(1):107–12. Epub 2009/12/17. doi: 10.1249/MSS.0b013e3181ae2bc0. PubMed PMID: 20010124.
14. Cheng YC, O’Connell JR, Cole JW, Stine OC, Dueker N, McArdle PF, et al. Genome-wide association analysis of ischemic stroke in young adults. G3 (Bethesda). 2011; 1(6):505–14. Epub 2012/03/03. doi: 10.1534/g3 .111.001164. PubMed PMID: 22384361; PubMed Central PMCID: PMC3276159.
15. Zhelankin AV, Iulmetova LN, Ahmetov, II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel). 2023; 13(3). Epub 20230228. doi: 10.3390/life13030659. PubMed PMID: 36983815; PubMed Central PMCID: PMC10056610.
16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559–75. Epub 2007/08/19. doi: 10.1086/519795. PubMed PMID: 17701901; PubMed Central PMCID: PMC1950838.
17. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):904–9. Epub 2006/07/25. doi: 10.1038/ng1847. PubMed PMID: 16862161.
18. Gel B, Serra E. karyoploteR: an R/ Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics. 2017; 33(19):3088–90. Epub 2017/06/03. doi: 10.1093/bioinformatics/btx346. PubMed PMID: 28575171; PubMed Central PMCID: PMC5870550.
19. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010; 26(18):2336–7. Epub 2010/07/17. doi: 10.1093/bio informatics/btq419. PubMed PMID: 20634204; PubMed Central PMCID: PMC2935401.
20. Urbanek S, Horner, J. R Graphics Device using Cairo Graphics Library for Creating High-Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript) and Display (X11 and Win32) Output 2022. Available from: https://cran.r-project.org /web/packages/Cairo/Cairo.pdf.
21. Wickham H, Girlich, M. tidyr: Tidy Messy Data 2022. Available from: https://tidyr .tidyverse.org, https://github.com/ tidyverse/tidyr.
22. McHugh C, Larson, J., Hackney, J. cpvSNP: Gene set analysis methods for SNP association p-values that lie in genes in given gene sets. R package version 1.30.0. 2022.
23. Delaneau O, Marchini J. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014; 5:3934. Epub 2015/02/06. doi: 10.1038/ncomms4934. PubMed PMID: 25653097; PubMed Central PMCID: PMC4338501.
24. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5(6):e1000529. Epub 2009/06/23. doi: 10.1371/journal.pgen.1000529. PubMed PMID: 19543373; PubMed Central PMCID: PMC2689936.
25. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011; 1(6):457–70. Epub 2012/03/03. doi: 10.1534/g3.111.001198. PubMed PMID: 22384356; PubMed Central PMCID: PMC3276165.
26. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016; 48(10):1279–83. Epub 2016/08/23. doi: 10.1038/ng.3643. PubMed PMID: 27548312; PubMed Central PMCID: PMC5388176.
27. Loh PR, Danecek P, Palamara PF, Fuchsberger C, Y AR, H KF, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016; 48(11):1443–8. Epub 2016/10/28. doi: 10.1038/ng.3679. PubMed PMID: 27694958; PubMed Central PMCID: PMC5096458.
28. Durbin R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics. 2014; 30(9):1266–72. Epub 2014/01/15. doi: 10.1093/ bioinformatics/btu014. PubMed PMID: 24413527; PubMed Central PMCID: PMC3998136.
29. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010; 11(7):499–511. Epub 2010/06/03. doi: 10.1038/nrg2796. PubMed PMID: 20517342.
30. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26(17):2190–1. Epub 2010/07/10. doi: 10.1093/bio informatics/btq340. PubMed PMID: 20616382; PubMed Central PMCID: PMC2922887.
31. Semenova EA, Zempo H, Miyamoto-Mikami E, Kumagai H, Larin AK, Sultanov RI, et al. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells. 2022; 11(23). Epub 20221202. doi: 10.3390/ cells11233910. PubMed PMID: 36497168; PubMed Central PMCID: PMC9737696.
32. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015; 11(4):e1004219. Epub 2015/04/18. doi: 10.1371/ journal.pcbi.1004219. PubMed PMID: 25885710; PubMed Central PMCID: PMC4401657.
33. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015; 1(6):417–25. Epub 2016/01/16. doi: 10.1016/j.cels.2015.12.004. PubMed PMID: 26771021; PubMed Central PMCID: PMC4707969.
34. Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017; 49(7):986–92. Epub 2017/05/23. doi: 10.1038/ng.3865. PubMed PMID: 28530675; PubMed Central PMCID: PMC5493198.
35. Zhang Q, Privé F, Vilhjálmsson B, Speed D. Improved genetic prediction of complex traits from individual-level data or summary statistics. Nat Commun. 2021; 12(1):4192. Epub 2021/07/09. doi: 10.1038/s41467-021-24485-y. PubMed PMID: 34234142; PubMed Central PMCID: PMC8263809.
36. National Collegiate Athletic Association. Estimated Probability of Competing in College Athletics 2020. Available from: https://ncaaorg.s3.amazonaws.com /research/pro_beyond/2020RES_ ProbabilityBeyondHSFiguresMethod.pdf.
37. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015; 47(6):569–76. Epub 2015/04/29. doi: 10.1038/ng.3259. PubMed PMID: 25915600; PubMed Central PMCID: PMC4828725.
38. Wilke C. cowplot: Streamlined Plot Theme and Plot Annotations for ‚ggplot2’. 2024. R package version 1.1.3, https:// wilkelab.org/cowplot/
39. Chen KM, Wong AK, Troyanskaya OG, Zhou J. A sequence-based global map of regulatory activity for deciphering human genetics. Nat Genet. 2022; 54(7):940–9. Epub 2022/07/12. doi: 10.1038/s41588-022-01102-2. PubMed PMID: 35817977; PubMed Central PMCID: PMC9279145.
40. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016; 19(11):1454–62. Epub 2016/10/28. doi: 10.1038/nn.4353. PubMed PMID: 27479844; PubMed Central PMCID: PMC5803797.
41. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14:128. Epub 2013/04/17. doi: 10.1186/1471-2105 -14-128. PubMed PMID: 23586463; PubMed Central PMCID: PMC3637064.
42. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016; 44(W1):W90–7. Epub 2016/05/05. doi: 10.1093/nar/gkw377. PubMed PMID: 27141961; PubMed Central PMCID: PMC4987924.
43. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021; 1(3):e90. Epub 2021/03/30. doi: 10.1002/cpz1.90. PubMed PMID: 33780170; PubMed Central PMCID: PMC8152575.
44. R Core Team. R: A Language and Environment for Statistical Computing 2023. Available from: https://www .R-project.org/.
45. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414):57–74. Epub 2012/09/08. doi: 10.1038/nature11247. PubMed PMID: 22955616; PubMed Central PMCID: PMC3439153.
46. Wang Q, Bao X, Chen S, Zhong H, Liu Y, Zhang L, et al. AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Res. 2021; 49(17):9755–67. Epub 2021/08/18. doi: 10.1093/nar/gkab 706. PubMed PMID: 34403482; PubMed Central PMCID: PMC8464031.
47. Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, et al. Cloning and characterization of a new human UDP-N-acetyl-alpha-D galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/ threonine antigen. J Biol Chem. 2003; 278(1):573–84. Epub 20021028. doi: 10.1074/jbc.M203094200. PubMed PMID: 12407114.
48. Waterhouse J. Muscle types. Anaesthesia & Intensive Care Medicine. 2008; 9(6):264–9. doi: https://doi.org/10 .1016/j.mpaic.2008.04.011.
49. Yu L, Xu M, Yan Y, Huang S, Yuan M, Cui B, et al. ZFYVE28 mediates insulin resistance by promoting phosphorylated insulin receptor degradation via increasing late endosomes production. Nat Commun. 2023; 14(1):6833. Epub 20231026. doi: 10.1038/s414 67-023-42657-w. PubMed PMID: 37884540; PubMed Central PMCID: PMC10603069.
50. Chou SW, Lai CH, Hsu TH, Cho YM, Ho HY, Lai YC, et al. Characteristics of glycemic control in elite power and endurance athletes. Prev Med. 2005; 40(5):564–9. doi: 10.1016/j.ypmed .2004.07.014. PubMed PMID: 15749139.
51. Nie J, Zhang W. Secreted protease ADAMTS18 in development and disease. Gene. 2023; 858:147169. Epub 20230109. doi: 10.1016/j.gene .2023.147169. PubMed PMID: 36632911.
52. Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L, Sha BY, et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet. 2009; 84(3):388–98. Epub 20090226. doi: 10.1016/j.ajhg .2009.01.025. PubMed PMID: 19249006; PubMed Central PMCID: PMC2667986.
53. Leigey D, Irrgang J, Francis K, Cohen P, Wright V. Participation in high-impact sports predicts bone mineral density in senior olympic athletes. Sports Health. 2009; 1(6):508–13. doi: 10.1177/1941738109347979. PubMed PMID: 23015914; PubMed Central PMCID: PMC3445153.
54. Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021; 53(9):1300–10. Epub 20210902. doi: 10.1038/s41588-021-00913-z. PubMed PMID: 34475573; PubMed Central PMCID: PMC8432599.
55. Fisher NM, AlHashim A, Buch AB, Badivuku H, Samman MM, Weiss KM, et al. A GRM7 mutation associated with developmental delay reduces mGlu7 expression and produces neurological phenotypes. JCI Insight. 2021; 6(4). Epub 20210222. doi: 10.1172/jci.insight.143324. PubMed PMID: 33476302; PubMed Central PMCID: PMC7934925.
56. Freitas GA, Niswender CM. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol Biochem Behav. 2023; 225:173546. Epub 20230330. doi: 10.1016/j. pbb.2023.173546. PubMed PMID: 37003303; PubMed Central PMCID: PMC10192299.
57. Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, et al. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun. 2022; 13(1):679. Epub 2022/02/05. doi: 10.1038/s41467 -022-28315-7. PubMed PMID: 35115549; PubMed Central PMCID: PMC8814034.
58. Power D, Santoso N, Dieringer M, Yu J, Huang H, Simpson S, et al. IFI44 suppresses HIV-1 LTR promoter activity and facilitates its latency. Virology. 2015; 481:142–50. Epub 2015/03/18. doi: 10.1016/j.virol.2015.02.046. PubMed PMID: 25776761; PubMed Central PMCID: PMC4437885.
59. Xiahou Z, Wang X, Shen J, Zhu X, Xu F, Hu R, et al. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat Commun. 2017; 8(1):950. Epub 2017/10/19. doi: 10.1038/s41467-017-00930-9. PubMed PMID: 29038465; PubMed Central PMCID: PMC5643540.
60. De Masi R, Orlando S. IFI35 as a biomolecular marker of neuroinflammation and treatment response in multiple sclerosis. Life Sci. 2020; 259:118233. Epub 2020/08/12. doi: 10.1016/j.lfs.2020.118233. PubMed PMID: 32781067.
61. Campbell TM, Bryceson YT. IL2RB maintains immune harmony. J Exp Med. 2019; 216(6):1231–3. Epub 2019/05/10. doi: 10.1084/jem .20190546. PubMed PMID: 31068380; PubMed Central PMCID: PMC6547856.
62. Gusic M, Schottmann G, Feichtinger RG, Du C, Scholz C, Wagner M, et al. Bi-Allelic UQCRFS1 Variants Are Associated with Mitochondrial Complex III Deficiency, Cardiomyopathy, and Alopecia Totalis. Am J Hum Genet. 2020; 106(1):102–11. Epub 2019/12/31. doi: 10.1016/j.ajhg.2019 .12.005. PubMed PMID: 31883641; PubMed Central PMCID: PMC7042493.
63. Speir M, Nowell CJ, Chen AA, O’Donnell JA, Shamie IS, Lakin PR, et al. Ptpn6 inhibits caspase-8- and Ripk3/ Mlkl-dependent inflammation. Nat Immunol. 2020; 21(1):54–64. Epub 2019/12/11. doi: 10.1038/s41590 -019-0550-7. PubMed PMID: 31819256; PubMed Central PMCID: PMC6923591.
64. Zhang Z, Feng AC, Salisbury D, Liu X, Wu X, Kim J, et al. Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nat Commun. 2020; 11(1):984. Epub 2020/02/23. doi: 10.1038/s41467-020-14711-4. PubMed PMID: 32080181; PubMed Central PMCID: PMC7033216 work. All other authors declare no competing interests.
65. Marenne G, Hendricks AE, Perdikari A, Bounds R, Payne F, Keogh JM, et al. Exome Sequencing Identifies Genes and Gene Sets Contributing to Severe Childhood Obesity, Linking PHIP Variants to Repressed POMC Transcription. Cell Metab. 2020; 31(6):1107-19.e12. Epub 2020/06/04. doi: 10.1016 /j.cmet.2020.05.007. PubMed PMID: 32492392; PubMed Central PMCID: PMC7267775.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.