Biol Sport. 2025;42(2):331–344
1. Joseph G, Mogelvang R, Biering-Sørensen T, Nielsen G, Schnohr P, Sogaard P. The association between physical activity and cardiac performance is dependent on age: the Copenhagen City Heart Study. Int J Cardiovasc Imaging. 2019; 35(7):1249–58. Epub 20190301. doi: 10.1007/ s10554-019-01566-0. PubMed PMID: 30825135; PubMed Central PMCID: PMC6598956.
2.
Ekblom-Bak E, Hellénius ML, Ekblom O, Engström LM, Ekblom B. Independent associations of physical activity and cardiovascular fitness with cardiovascular risk in adults. Eur J Cardiovasc Prev Rehabil. 2010; 17(2):175–80. doi: 10.1097/HJR.0b013e32833254f2. PubMed PMID: 19809331.
3.
Alhumaid W, Small SD, Kirkham AA, Becher H, Pituskin E, Prado CM, et al. A Contemporary Review of the Effects of Exercise Training on Cardiac Structure and Function and Cardiovascular Risk Profile: Insights From Imaging. Front Cardiovasc Med. 2022; 9:753652. Epub 20220221. doi: 10.3389/fcvm.2022.753652. PubMed PMID: 35265675; PubMed Central PMCID: PMC8898950.
4.
Teixeira PJ, Carraça EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: A systematic review. International Journal of Behavioral Nutrition and Physical Activity. 2012; 9(1):78. doi: 10.1186/1479-5868-9-78.
5.
Herbert C, Meixner F, Wiebking C, Gilg V. Regular Physical Activity, Short-Term Exercise, Mental Health, and Well-Being Among University Students: The Results of an Online and a Laboratory Study. Front Psychol. 2020; 11:509. Epub 20200526. doi: 10.3389/fpsyg.2020.00509. PubMed PMID: 32528333; PubMed Central PMCID: PMC7264390.
6.
Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y, et al. Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metabolism. 2020; 31(1):77–91.e5. doi: https://doi.org/10.1016/j.cmet.2019 .11.001.
7.
ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166(1):111–7. doi: 10.1164/ajrccm.166.1.at1102. PubMed PMID: 12091180.
8.
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Medicine. 2022; 52(3):547–83. doi: 10.1007/s40279-021-01582-y.
9.
The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020; 369(6509):1318–30. doi: 10.1126/science.aaz1776. PubMed PMID: 32913098; PubMed Central PMCID: PMC7737656.
10.
Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes. 2013; 3(9):e88. Epub 20130916. doi: 10.1038/nutd .2013.30. PubMed PMID: 24042701; PubMed Central PMCID: PMC3789133.
11.
Marson EC, Delevatti RS, Prado AK, Netto N, Kruel LF. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Prev Med. 2016; 93:211–8. Epub 20161020. doi: 10.1016/j.ypmed.2016.10.020. PubMed PMID: 27773709.
12.
Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, et al. Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes Rev. 2021; 22 Suppl 4(Suppl 4):e13269. Epub 20210506. doi: 10.1111/obr.13269. PubMed PMID: 33960110; PubMed Central PMCID: PMC8365642.
13.
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022; 54(2):353–68. doi: 10.1249 /MSS.0000000000002800. PubMed PMID: 35029593; PubMed Central PMCID: PMC8802999.
14.
Valerio G. Metabolic Requirements during Six Minutes Walking Tests in Patients Affected by Chronic Obstructive Pulmonary Disease in Different Stages. Open Journal of Respiratory Diseases. 2012; 02:83–90. doi: 10.4236/ojrd .2012.24012.
15.
Cazzoletti L, Zanolin ME, Dorelli G, Ferrari P, Dalle Carbonare LG, Crisafulli E, et al. Six-minute walk distance in healthy subjects: reference standards from a general population sample. Respir Res. 2022; 23(1):83. Epub 20220405. doi: 10.1186/s12931-022-02003-y. PubMed PMID: 35382813; PubMed Central PMCID: PMC8985335.
16.
Mänttäri A, Suni J, Sievänen H, Husu P, Vähä-Ypyä H, Valkeinen H, et al. Six-minute walk test: a tool for predicting maximal aerobic power (VO(2 ) max) in healthy adults. Clin Physiol Funct Imaging. 2018. Epub 20180531. doi: 10.1111/cpf.12525. PubMed PMID: 29851229.
17.
Delbressine JM, Jensen D, Vaes AW, Li PZ, Bourbeau J, Tan WC, et al. Reference values for six-minute walk distance and six-minute walk work in Caucasian adults. Pulmonology. 2023; 29(5):399–409. Epub 20230410. doi: 10.1016/j.pulmoe.2023.02.014. PubMed PMID: 37045743.
18.
Kunutsor SK, Isiozor NM, Khan H, Laukkanen JA. Handgrip strength-A risk indicator for type 2 diabetes: Systematic review and meta-analysis of observational cohort studies. Diabetes Metab Res Rev. 2021; 37(2):e3365. Epub 20200718. doi: 10.1002/dmrr.3365. PubMed PMID: 32543028.
19.
Zheng J, Zhang L, Jiang M. Lower handgrip strength levels probably precede triglyceride glucose index and associated with diabetes in men not in women. J Diabetes Investig. 2022; 13(1):148–55. Epub 20210727. doi: 10.1111/jdi.13626. PubMed PMID: 34228900; PubMed Central PMCID: PMC8756317.
20.
Wu H, Liu M, Chi VTQ, Wang J, Zhang Q, Liu L, et al. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: a large-scale population-based study. Metabolism. 2019; 93:61–7. Epub 20190125. doi: 10.1016/j.metabol.2019.01.011. PubMed PMID: 30690038.
21.
Taylor DL, Jackson AU, Narisu N, Hemani G, Erdos MR, Chines PS, et al. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc Natl Acad Sci U S A. 2019; 116(22):10883–8. Epub 20190510. doi: 10.1073/pnas.1814263116. PubMed PMID: 31076557; PubMed Central PMCID: PMC6561151.
22.
Al-Khelaifi F, Diboun I, Donati F, Botrè F, Alsayrafi M, Georgakopoulos C, et al. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med Open. 2018; 4(1):2. Epub 20180105. doi: 10.1186/s40798-017-0114-z. PubMed PMID: 29305667; PubMed Central PMCID: PMC5756230.
23.
Agarwala P, Salzman SH. Six-Minute Walk Test: Clinical Role, Technique, Coding, and Reimbursement. Chest. 2020; 157(3):603–11. Epub 20191102. doi: 10.1016/j. chest.2019.10.014. PubMed PMID: 31689414; PubMed Central PMCID: PMC7609960.
24.
Jansen RS, Addie R, Merkx R, Fish A, Mahakena S, Bleijerveld OB, et al. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc Natl Acad Sci U S A. 2015; 112(21):6601–6. Epub 20150511. doi: 10.1073/pnas.14246 38112. PubMed PMID: 25964343; PubMed Central PMCID: PMC4450436.
25.
Scott B, Day EA, O’Brien KL, Scanlan J, Cromwell G, Scannail AN, et al. Metformin and feeding increase levels of the appetite-suppressing metabolite Lac-Phe in humans. Nature Metabolism. 2024. doi: 10.1038/s42255-024 -01018-7.
26.
Fernandes Silva L, Hokkanen J, Vangipurapu J, Oravilahti A, Laakso M. Metabolites as Risk Factors for Diabetic Retinopathy in Patients With Type 2 Diabetes: A 12-Year Follow-up Study. J Clin Endocrinol Metab. 2023; 109(1):100–6. doi: 10.1210/clinem /dgad452. PubMed PMID: 37560996; PubMed Central PMCID: PMC10735554.
27.
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021; 131(2). doi: 10.1172 /jci136055. PubMed PMID: 33463549; PubMed Central PMCID: PMC7810486.
28.
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, et al. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics. 2024; 20(2):36. Epub 20240306. doi: 10.1007/s11306-024-02089-z. PubMed PMID: 38446263; PubMed Central PMCID: PMC10917846.
29.
Xia J-g, Li B, Zhang H, Li Q-x, Lam SM, Yin C-l, et al. Precise Metabolomics Defines Systemic Metabolic Dysregulation Distinct to Acute Myocardial Infarction Associated With Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology. 2023; 43(4):581–96. doi: doi: 10.1161/ATVBAHA.122 .318871.
30.
Li VL, He Y, Contrepois K, Liu H, Kim JT, Wiggenhorn AL, et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature. 2022; 606(7915):785–90. Epub 20220615. doi: 10.1038/s41586-022-04828-5. PubMed PMID: 35705806; PubMed Central PMCID: PMC9767481.
31.
Brasil Santos D, de Assis Viegas CA. Correlation of levels of obstruction in COPD with lactate and six-minute walk test. Rev Port Pneumol. 2009; 15(1):11–25. doi: 10.1016/s2173 -5115(09)70085-5. PubMed PMID: 19145384.
32.
Li-Gao R, Grubbs K, Bertoni AG, Hoffman KL, Petrosino JF, Ramesh G, et al. The Roles of Gut Microbiome and Plasma Metabolites in the Associations between ABO Blood Groups and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Metabolites. 2022; 12(9):787. PubMed PMID: doi: 10.3390/metabo12090787.
33.
Czibik G, Mezdari Z, Altintas DM, Bréhat J, Pini M, d’Humières T, et al. Dysregulated Phenylalanine Catabolism Plays a Key Role in the Trajectory of Cardiac Aging. Circulation. 2021; 144(7):559–74. doi: doi: 10.1161 /CIRCULATIONAHA.121.054204.
34.
McGarrah RW, White PJ. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol. 2023; 20(2):77–89. Epub 20220905. doi: 10.1038/ s41569-022-00760-3. PubMed PMID: 36064969; PubMed Central PMCID: PMC10284296.
35.
Hall ECR, Semenova EA, Bondareva EA, Borisov OV, Andryushchenko ON, Andryushchenko LB, et al. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol Sport. 2021; 38(4):659–66. Epub 20210205. doi: 10.5114/biolsport.2021.102923. PubMed PMID: 34937976; PubMed Central PMCID: PMC8670815.
36.
Sundberg CW, Fitts RH. Bioenergetic basis of skeletal muscle fatigue. Curr Opin Physiol. 2019; 10:118–27. Epub 20190510. doi: 10.1016/j. cophys.2019.05.004. PubMed PMID: 31342000; PubMed Central PMCID: PMC6656370.
37.
Guilherme J, Lancha AH, Jr. Single Nucleotide Polymorphisms in Carnosinase Genes (CNDP1 and CNDP2) are Associated With Power Athletic Status. Int J Sport Nutr Exerc Metab. 2017; 27(6):533–42. Epub 20170905. doi: 10.1123/ijsnem.2017-0098. PubMed PMID: 28871847.
38.
Coqueiro AY, Rogero MM, Tirapegui J. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients. 2019; 11(4). Epub 20190417. doi: 10.3390 /nu11040863. PubMed PMID: 30999561; PubMed Central PMCID: PMC6520936.
39.
Nagashima M, Soejima Y, Saito K. Glutamine and exercise. The Journal of Physical Fitness and Sports Medicine. 2013; 2(4):469–73. doi: 10.7600 /jpfsm.2.469.
40.
Watanabe K, Nagao M, Toh R, Irino Y, Shinohara M, Iino T, et al. Critical role of glutamine metabolism in cardiomyocytes under oxidative stress. Biochemical and Biophysical Research Communications. 2021; 534:687–93. doi: https://doi.org /10.1016/j.bbrc.2020.11.018.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.