1. Luckheeram RV, Zhou R, Verma AD, Xia B (2012): CD4+ T cells: Differentiation and functions. Clin Dev Immunol 2012: 1-12.
2.
Kisielow P (2014): Demonstration of functional heterogeneity of T lymphocytes and identification of their two major subsets. Front Immunol 5: 609.
3.
Raskov H, Orhan A, Christensen JP, Gögenur I (2021): Cyto- toxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 124: 359-367.
4.
Pistoia V, Tumino N, Vacca P, et al. (2018): Human T-cells: From surface receptors to the therapy of high-risk leukemias. Front Immunol 9: 984.
5.
Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W (2013): Characteristics of T lymphocyte subpopulations. Postepy Hig Med Dosw 67: 371-379.
6.
Gold MC, Lewinsohn DM (2013): Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat Rev Microbiol 11: 14-19.
7.
Schmiedel BJ, Gonzalez-Colin C, Fajardo V, et al. (2022): Single-cell EQTL analysis of activated T cell subsets reveals activation and cell type–dependent effects of disease-risk variants. Sci Immunol 7: eabm2508.
8.
Velders MP, Markiewicz MA, Eiben GL, Kast WM (2003): CD4+ T cell matters in tumor immunity. Int Rev Immunol 22: 113-140.
9.
Bosisio FM, Cerroni L (2015): Expression of T-follicular helper markers in sequential biopsies of progressive mycosis fungoides and other primary cutaneous T-cell lymphomas. Am J Dermatopathol 37: 115-121.
10.
Thornhill JP, Fidler S, Klenerman P, et al. (2017): The role of CD4+ T follicular helper cells in HIV infection: From the germinal center to the periphery. Front Immunol 8: 46.
11.
Qin L, Waseem TC, Sahoo A, et al. (2018): Insights into the molecular mechanisms of T follicular helper-mediated immunity and pathology. Front Immunol 9: 1884.
12.
Crotty S (2019): T follicular helper cell biology: A decade of discovery and diseases. Immunity 50: 1132-1148.
13.
Che Y, Qiu J, Jin T, et al. (2016): Circulating memory T follicular helper subsets, Tfh2 and Tfh17, participate in the pathogenesis of Guillain-Barré syndrome. Sci Rep 6: 20963.
14.
De Monte L, Clemente F, Ruggiero E, et al. (2023): Pro-tumor Tfh2 cells induce detrimental IgG4 production and PGE2-dependent IgE inhibition in pancreatic cancer. EBioMedicine 97: 104819.
15.
Gao X, Luo K, Wang D, et al. (2023): T follicular helper 17 (Tfh17) cells are superior for immunological memory maintenance. Elife 12: e82217.
16.
Vella LA, Buggert M, Manne S, et al. (2019): T follicular helper cells in human efferent lymph retain lymphoid characteristics. J Clin Invest 129: 3185-3200.
17.
Qi J, Liu C, Bai Z, et al. (2023): T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 14: 1178792.
18.
Gensous N, Charrier M, Duluc D, et al. (2018): T follicular helper cells in autoimmune disorders. Front Immunol 9: 1637.
19.
Cicalese MP, Salek-Ardakani S, Fousteri G (2020): Editorial: Follicular helper T cells in immunity and autoimmunity. Front Immunol 11: 1042.
20.
Asrir A, Aloulou M, Gador M, et al. (2017): Interconnected subsets of memory follicular helper T cells have different effector functions. Nat Commun 8: 847.
21.
Ueno H (2016): T follicular helper cells in human autoimmunity. Curr Opin Immunol 43: 24-31.
22.
Dobrzanski MJ (2013): Expanding Roles for CD4 T Cells and Their Subpopulations in Tumor Immunity and Therapy. Front Oncol 3: 63.
23.
García-Chagollán M, Ledezma-Lozano IY, Hernández-Bello J, et al. (2020): Expression patterns of CD28 and CTLA-4 in early, chronic, and untreated rheumatoid arthritis. J Clin Lab Anal 34: e23188.
24.
Simoni Y, Becht E, Fehlings M, et al. (2018): Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557: 575-579.
25.
Raskov H, Orhan A, Christensen JP, Gögenur I (2021): Cyto- toxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 124: 359-367.
26.
Yost KE, Satpathy AT, Wells DK, et al. (2019): Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 25: 1251-1259.
27.
Koppensteiner L, Mathieson L, Pattle S, et al. (2023): Location of CD39+ T cell subpopulations within tumors predict differential outcomes in non-small cell lung cancer. J Immunother Cancer 11: e006770.
28.
Attrill GH, Lee H, Tasker AT, et al. (2022): Detailed spatial immunophenotyping of primary melanomas reveals immune cell subpopulations associated with patient outcome. Front Immunol 13: 979993.
29.
Timperi E, Barnaba V (2021): CD39 regulation and functions in T cells. Int J Mol Sci 2021; 22: 8068.
30.
Whittaker S, Jones CL (2023): CD39-CD73-adenosine effects in Sézary syndrome. Blood 141: 9-10.
31.
Ortiz MA, Diaz-Torné C, De Agustin JJ, et al. (2024): Altered CD39 and CD73 expression in rheumatoid arthritis: Implications for disease activity and treatment response. Biomolecules 14: 1.
32.
Geng R, Tang H, You T, et al. (2023): Peripheral CD8+CD28+ T lymphocytes predict the efficacy and safety of PD-1/PD-L1 inhibitors in cancer patients. Front Immunol 14: 1125876.
33.
Liu C, Hu Q, Hu K, et al. (2019): Increased CD8+CD28+ T cells independently predict better early response to stereotactic ablative radiotherapy in patients with lung metastases from non-small cell lung cancer. J Transl Med 17: 120.
34.
Caruso A, Licenziati S, Canaris AD, et al. (1998): Contribution of CD4+, CD8+CD28+, and CD8+CD28- T cells to CD3+ lymphocyte homeostasis during the natural course of HIV-1 infection. J Clin Invest 101: 137-144.
35.
Cartwright EK, Pampusch MS, Rendahl AK, et al. (2022): HIV-specific CAR T cells with CD28 or 4-1BB signaling domains are phenotypically and functionally distinct and effective at suppressing HIV and simian immunodeficiency virus. Immunohorizons 6: 693-704.
36.
Körmendy D, Hoff H, Hoff P, et al. (2013): Impact of the CTLA-4/CD28 axis on the processes of joint inflammation in rheumatoid arthritis. Arthritis Rheum 65: 81-87.
37.
García-Chagollán M, Ledezma-Lozano IY, Hernández-Bello J, et al. (2020): Expression patterns of CD28 and CTLA-4 in early, chronic, and untreated rheumatoid arthritis. J Clin Lab Anal 34: e23188.
38.
Huff WX, Kwon JH, Henriquez M, et al. (2019): The evolving role of CD8+CD28 immunosenescent T cells in cancer immunology. Int J Mol Sci 20: 2810.
39.
Huff WX, Bam M, Shireman JM, et al. (2021): Aging- and tumor-mediated increase in CD8+CD28 T cells might impose a strong barrier to success of immunotherapy in glioblastoma. Immunohorizons 5: 395-409.
40.
Liu G, Yu Y, Feng F, et al. (2020): Human CD8+CD28 T suppressor cells expanded by common gamma chain (c) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol 21: 23.
41.
Chen X, Liu Q, Xiang AP (2018): CD8+CD28- T cells: not only age-related cells but a subset of regulatory T cells. Cell Mol Immunol 15: 734-736.
42.
Lee S, Choi HY, Lee G, et al. (2021): CD8+ TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 9: e002709.
43.
Guo L, Liu X, Su X (2023): The role of TEMRA cell-mediated immune senescence in the development and treatment of HIV disease. Front Immunol 14: 1284293.
44.
Türk L, Filippov I, Arnold C, et al. (2024): Cytotoxic CD8+ Temra cells show loss of chromatin accessibility at genes associated with T cell activation. Front Immunol 15: 1285798.
45.
Uckun FM, Burkhardt AL, Jarvis L, et al. (1993): Signal transduction through the CD19 receptor during discrete developmental stages of human B-cell ontogeny. J Biol Chem 268: 21172-21184.
46.
Chen Q, Yuan S, Sun H, Peng L (2019): CD3+CD20+ T cells and their roles in human diseases. Hum Immunol 80: 191-194.
47.
Semeniuk-Wojtaś A, Modzelewska M, Poddębniak-Strama K, et al. (2023): CD4, CD20 and PD-L1 as markers of recurrence in non-muscle-invasive bladder cancer. Cancers (Basel) 15: 5529.
48.
Lee AYS (2022): CD20+ T cells: An emerging T cell subset in human pathology. Inflamm Res 71: 1181-1189.
49.
de Bruyn M, Wiersma VR, Wouters MCA, et al. (2015): CD20+ T cells have a predominantly Tc1 effector memory phenotype and are expanded in the ascites of patients with ovarian cancer. Oncoimmunology 4: e999536.
50.
Schuh E, Berer K, Mulazzani M, et al. (2016): Features of human CD3+CD20+ T cells. J Immunol 197: 1111-1117.