eISSN: 1897-4295
ISSN: 1734-9338
Advances in Interventional Cardiology/Postępy w Kardiologii Interwencyjnej
Current issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2017
vol. 13
 
Share:
Share:
abstract:

Optical coherence tomography improves the results of balloon pulmonary angioplasty in inoperable chronic thrombo-embolic pulmonary hypertension

Aleksander Araszkiewicz
,
Stanisław Jankiewicz
,
Magdalena Łanocha
,
Magdalena Janus
,
Tatiana Mularek-Kubzdela
,
Maciej Lesiak

Adv Interv Cardiol 2017; 13, 2 (48): 180–181
Online publish date: 2017/05/30
View full text Get citation
 
A 71-year-old woman with non-operable, peripheral type chronic thrombo-embolic pulmonary hypertension (CTEPH) and with World Health Organisation (WHO) class III dyspnoea was admitted to our department for balloon pulmonary angioplasty (BPA). Right heart catheterisation confirmed pulmonary hypertension (mean pulmonary artery pressure (mPAP) 37 mm Hg, mean right atrial pressure (mRAP) 6 mm Hg, pulmonary capillary wedge pressure (PCWP) 13 mm Hg, pulmonary vascular resistance (PVR) 214 dyn • s • cm–5 and cardiac Index (CI) 4.1 l/min • m2) and pulmonary scintigraphy showed multiple segmental perfusion defects (segments 1, 2, 8, 9 in the left lung and 2, 3, 4, 5, 6 in the right lung). Functional testing demonstrated a reduced 6-minute walk distance of 220 m. The BPA was performed from a right femoral vein approach. The 90-cm long 6Fr sheath (Flexor Shuttle Guiding Sheath, Cook Medical, Bloomington, IN, USA) and right Judkins 6-Fr guide catheter were used to achieve a good approach to the ostium of the A1 + A2 segmental branch. Selective pulmonary angiography revealed the subtotally occluded A1 segmental branch of the left pulmonary artery (Figure 1 A). Subsequently a Whisper MS coronary guidewire (Abbott Vascular, Santa Clara, Ca, USA) was advanced through the lesion to the distal part of the vessel. Then optical coherence tomography (OCT) of the target vessel was performed with the DragonFly (St. Jude Medical, USA) OCT catheter. Iodinated contrast was infused at a flow rate of 5 ml/s over 4 s at 400 psi of pressure and OCT images were acquired. Subsequently the vessel was accurately measured in several locations and the proper size of the balloon was selected to reduce the risk of post-reperfusion oedema.
Surprisingly, OCT revealed extensive changes in the proximal and mid part of the target artery (“colander lesions” or meshwork) (Figure 1 B). The diameter of the vessel was 2.23 mm × 2.42 mm. Four inflations of a 2.0 mm × 20 mm semi-compliant balloon with the pressure of 4–10 atm were performed along the entire artery with good angiographic and hemodynamic effects (Figure 1 C). The procedure was uneventful. Three more BPA sessions at intervals of a few weeks were performed and mPAP was reduced to 29 mm Hg (mRAP – 7 mm Hg, PCWP – 13 mm Hg, PVR – 167 dyn • s • cm–5, CI – 4.1 l/min • m2) and 6-minute walking test (6-MWT) increased to 430 m. The BPA is an emerging method of treatment of patients with inoperable CTEPH [1, 2]. The use of intra-vessel imaging...


View full text...
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.