Current issue
Archive
About the journal
Editorial board
Abstracting and indexing
Subscription
Contact
Instructions for authors
Publication charge
Ethical standards and procedures
Editorial System
Submit your Manuscript
|
4/2019
vol. 100 abstract:
RESEARCH PAPERS
Optimizing the biosynthesis of renewable polyhydroxyalkanoate copolymer containing 3-hydroxyvalerate by Massilia haematophila using statistical modeling
Jong T. Kiun
1
,
Tan S. M. Amelia
1
,
Kai Hee Huong
2
,
Al-Ashraf Abdullah Amirul
2, 3
,
Kesaven Bhubalan
1, 3
BioTechnologia vol. 100 (4) C pp. 359–371 C 2019
Online publish date: 2019/12/25
View
full text
Get citation
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
Polyhydroxyalkanoate (PHA) is a microbial storage polymer that is naturally produced by certain bacteria. This is the first study on the ability of this particular species Massilia haematophila to synthesize a PHA copolymer containing 3-hydroxyvalerate (3HV) monomer. Using the statistical design on Massilia haematophila UMTKB-2, this study highlights the optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), copolymer production for shaken-flask cultivation. Moreover, the mechanical and thermal features of the polymers were determined. The production of P(3HB-co-3HV) by Massilia haematophila UMTKB-2 using optimal conditions provided by response surface methodology (RSM) yielded 5.0 g/l of P(3HB-co-7 mol% 3HV), which was higher than the value obtained from unoptimized conditions such as 4.40 g/l of P(3HB-co-4mol% 3HV). This result showed a 14% increase in copolymer concentration and a two-fold increase in 3HV composition. In this study, the P(3HB-co-3HV) synthesized was determined as a block copolymer and its thermal properties were better than P(3HB). Using RSM, the optimization conditions were successfully obtained for this bacterium, and this result is a starting platform for additional studies of a larger scaled PHA production from Massilia haematophila UMTKB-2 using bioreactors.
keywords:
3-hydroxyvalerate, biorenewable, Massilia haematophila, optimization, polyhydroxyalkanoate, response surface methodology |