en POLSKI
eISSN: 2083-8441
ISSN: 2081-237X
Pediatric Endocrinology Diabetes and Metabolism
Current issue Archive Manuscripts accepted About the journal Supplements Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2024
vol. 30
 
Share:
Share:
Original paper

Performance of real-time continuous glucose monitoring during track and field training in adolescents with type 1 diabetes

Rebecca T. Zimmer
1
,
Felix Aberer
1, 2
,
Janis Schierbauer
1
,
Paul Zimmermann
1
,
Philipp Birnbaumer
3
,
Maria Fritsch
4
,
Elke Fröhlich-Reiterer
4
,
Peter Hofmann
3
,
Harald Sourij
2
,
Othmar Moser
1, 2

  1. Division of Exercise Physiology and Metabolism, BaySpo – Bayreuth Center of Sport Science, University of Bayreuth, Germany
  2. Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Austria
  3. Exercise Physiology, Training & Training Therapy Research Group, Institute of Human Movement Science, Sport and Health, University of Graz, Austria
  4. Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, Medical University of Graz, Austria
Pediatr Endocrinol Diabetes Metab 2024; 30 (4): 211-220
Online publish date: 2025/01/27
Article file
Get citation
 
PlumX metrics:
 
1. Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement [published correction appears in Lancet Diabetes Endocrinol 2017; 5: e3. doi: 10.1016/S2213-8587(17)30086-4]. Lancet Diabetes Endocrinol 2017; 5: 377–390. doi: 10.1016/S2213-8587(17)30014-1.
2. Chiang JL, Maahs DM, Garvey KC, et al. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association. Diabetes Care 2018; 41: 2026–2044. doi: 10.2337/dci18-0023.
3. Robertson K, Adolfsson P, Riddell MC, et al. Exercise in children and adolescents with diabetes. Pediatr Diabetes 2008; 9: 65–77. doi: 10.1111/j.1399-5448.2007.00362.x.
4. American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43, Suppl 1: S163–S182. doi: 10.2337/dc20-S013.
5. Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell 1996; 85: 291–297. doi: 10.1016/s0092-8674(00)81106-x.
6. Riddell MC, Gal RL, Bergford S, et al. The Acute Effects of Real-World Physical Activity on Glycemia in Adolescents With Type 1 Diabetes: The Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) Study. Diabetes Care 2024; 47: 132–139. doi: 10.2337/dc23-1548.
7. Brazeau AS, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care 2008; 31: 2108–2109. doi: 10.2337/dc08-0720.
8. Dash K, Goyder EC, Quirk H. A qualitative synthesis of the perceived factors that affect participation in physical activity among children and adolescents with type 1 diabetes. Diabet Med 2020; 37: 934–944. doi: 10.1111/dme.14299.
9. Parent C, Lespagnol E, Berthoin S, et al. Barriers to Physical Activity in Children and Adults Living With Type 1 Diabetes: A Complex Link With Real-life Glycemic Excursions. Can J Diabetes 2023; 47: 124–132. doi: 10.1016/j.jcjd.2022.10.006.
10. World Health Organization, WHO Guidelines on Physical Activity and Sedentary Behaviour.
11. Moser O, Eckstein ML, West DJ, et al. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26: 946–957. doi: 10.2174/1381612826666200108113002.
12. Gal JJ, Li Z, Willi SM, Riddell MC. Association between high levels of physical activity and improved glucose control on active days in youth with type 1 diabetes. Pediatr Diabetes 2022; 23: 1057–1063. doi: 10.1111/pedi.13391.
13. Edelman SV, Argento NB, Pettus J, Hirsch IB. Clinical Implications of Real-time and Intermittently Scanned Continuous Glucose Monitoring. Diabetes Care 2018; 41: 2265–2274. doi: 10.2337/dc18-1150.
14. Haak T, Hanaire H, Ajjan R, et al. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial. Diabetes Ther 2017; 8: 55–73. doi: 10.1007/s13300-016-0223-6.
15. Leelarathna L, Wilmot EG. Flash forward: a review of flash glucose monitoring. Diabet Med. 2018; 35: 472–482. doi: 10.1111/dme.13584.
16. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, et al. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet 2016; 388: 2254–2263. doi: 10.1016/S0140-6736(16)31535-5.
17. Dover AR, Stimson RH, Zammitt NN, Gibb FW. Flash Glucose Monitoring Improves Outcomes in a Type 1 Diabetes Clinic. J Diabetes Sci Technol 2017; 11: 442–443. doi: 10.1177/1932296816661560.
18. Laffel LM, Kanapka LG, Beck RW, et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adolescents and Young Adults With Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2020; 323: 2388–2396. doi: 10.1001/jama.2020.6940.
19. Karges B, Tittel SR, Bey A, et al. Continuous glucose monitoring versus blood glucose monitoring for risk of severe hypoglycaemia and diabetic ketoacidosis in children, adolescents, and young adults with type 1 diabetes: a population-based study. Lancet Diabetes Endocrinol 2023; 11: 314–323. doi: 10.1016/S2213-8587(23)00061-X.
20. Merino J, Linenberg I, Bermingham KM, et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. Am J Clin Nutr 2022; 115: 1569–1576. doi: 10.1093/ajcn/nqac026.
21. Jafri RZ, Balliro CA, El-Khatib F, et al. A Three-Way Accuracy Comparison of the Dexcom G5, Abbott Freestyle Libre Pro, and Senseonics Eversense Continuous Glucose Monitoring Devices in a Home-Use Study of Subjects with Type 1 Diabetes. Diabetes Technol Ther 2020; 22: 846–852. doi: 10.1089/dia.2019.0449.
22. Moser O, Riddell MC, Eckstein ML, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020; 63: 2501–2520. doi: 10.1007/s00125-020-05263-9.
23. Aberer F, Hajnsek M, Rumpler M, et al. Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes. Diabetes Obes Metab 2017; 19: 1051–1055. doi: 10.1111/dom.12907.
24. Moser O, Eckstein ML, McCarthy O, et al. Performance of the Freestyle Libre flash glucose monitoring (flash GM) system in individuals with type 1 diabetes: A secondary outcome analysis of a randomized crossover trial. Diabetes Obes Metab 2019; 21: 2505–2512. doi: 10.1111/dom.13835.
25. Moser O, Yardley JE, Bracken RM. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between. Nutrients 2018; 10: 93. doi: 10.3390/nu10010093.
26. Basu A, Dube S, Slama M, et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 2013; 62: 4083–4087. doi: 10.2337/db13-1132.
27. Zaharieva DP, Turksoy K, McGaugh SM, et al. Lag Time Remains with Newer Real-Time Continuous Glucose Monitoring Technology During Aerobic Exercise in Adults Living with Type 1 Diabetes. Diabetes Technol Ther 2019; 21: 313–321. doi: 10.1089/dia.2018.0364.
28. Moser O, Eckstein ML, Mueller A, et al. Impact of physical exercise on sensor performance of the FreeStyle Libre intermittently viewed continuous glucose monitoring system in people with Type 1 diabetes: a randomized crossover trial. Diabet Med 2019; 36: 606–611. doi: 10.1111/dme.13909.
29. Moser O, Pandis M, Aberer F, et al. A head-to-head comparison of personal and professional continuous glucose monitoring systems in people with type 1 diabetes: Hypoglycaemia remains the weak spot. Diabetes Obes Metab 2019; 21: 1043–1048. doi: 10.1111/dom.13598.
30. Eichenlaub M, Pleus S, Rothenbühler M, et al. Comparator Data Characteristics and Testing Procedures for the Clinical Performance Evaluation of Continuous Glucose Monitoring Systems. Diabetes Technol Ther 2024; 26: 263–275. doi: 10.1089/dia.2023.0465.
31. Zimmer RT, Birnbaumer P, Sternad C, et al. Impact of a 4-week intensive track and field training intervention on glycaemia in adolescents with type 1 diabetes: The ChilDFiT1 study. Diabetes Obes Metab 2024; 26: 631–641. doi: 10.1111/dom.15352.
32. Lin YK, Hung M, Sharma A, et al. Impaired awareness of hypoglycemia continues to be a risk factor for severe hypoglycemia despite the use of continuous glucose monitoring system in type 1 diabetes. Endocr Pract 2019; 25: 517–525. doi: 10.4158/EP-2018-0527.
33. Abraham MB, Karges B, Dovc K, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2022; 23: 1322–1340. doi: 10.1111/pedi.13443.
34. Moser O, Riddell MC, Eckstein ML, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes 2020; 21: 1375–1393. doi: 10.1111/pedi.13105.
35. Deutscher Leichtathletik Verband (DLV), Kinderleichtathletik. [Online]. Available at: https://www.leichtathletik.de/jugend/kinderleichtathletik (Access: 15.04.2022).
36. Rosario AS, Kurth BM, Stolzenberg H, et al. Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003-2006). Eur J Clin Nutr 2010; 64: 341–349. doi: 10.1038/ejcn.2010.8.
37. Welsh JB, Zhang X, Puhr SA, et al. Performance of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System in Pediatric Participants With Type 1 Diabetes. J Diabetes Sci Technol 2019; 13: 254–258. doi: 10.1177/1932296818798816.
38. Nagl K, Berger G, Aberer F, et al. Performance of three different continuous glucose monitoring systems in children with type 1 diabetes during a diabetes summer camp. Pediatr Diabetes 2021; 22: 271–278. doi: 10.1111/pedi.13160.
39. Dyess RJ, McKay T, Feygin Y, Wintergerst K, Thrasher BJ. Factory-Calibrated Continuous Glucose Monitoring System Accuracy During Exercise in Adolescents With Type 1 Diabetes Mellitus. J Diabetes Sci Technol 2024; 18: 584–591. doi: 10.1177/19322968221120433.
40. Rashid MM, Askari MR, Chen C, et al. Artificial Intelligence Algorithms for Treatment of Diabetes. Algorithms 2022; 15: 299. doi: 10.3390/a15090299.
41. Castle JR, El Youssef J, Wilson LM, et al. Randomized Outpatient Trial of Single- and Dual-Hormone Closed-Loop Systems That Adapt to Exercise Using Wearable Sensors. Diabetes Care 2018; 41: 1471–1477. doi: 10.2337/dc18-0228.
42. Sevil M, Rashid M, Maloney Z, et al. Determining Physical Activity Characteristics from Wristband Data for Use in Automated Insulin Delivery Systems. IEEE Sens J 2020; 20: 12859–12870. doi: 10.1109/jsen.2020.3000772.
43. Paldus B, Morrison D, Lee M, et al. Strengths and Challenges of Closed-Loop Insulin Delivery During Exercise in People With Type 1 Diabetes: Potential Future Directions. J Diabetes Sci Technol 2023; 17: 1077–1084. doi: 10.1177/19322968221088327.
44. Zimmer RT, Auth A, Schierbauer J, et al. (Hybrid) Closed-Loop Systems: From Announced to Unannounced Exercise. Diabetes Technol Ther 2023. doi: 10.1089/dia.2023.0293.
45. Guillot FH, Jacobs PG, Wilson LM, et al. Accuracy of the Dexcom G6 Glucose Sensor during Aerobic, Resistance, and Interval Exercise in Adults with Type 1 Diabetes. Biosensors (Basel) 2020; 10: 138. doi: 10.3390/bios10100138.

Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.