1. Division of Viral Hepatitis NC for H. National Progress Report 2025 Goal: Reduce HBV Deaths. Centers for Disease Control and Prevention; 2021. Available from URL: https://www.cdc.gov/hepatitis/policy/strategicplansrpts.html.
2.
Mehta P, Reddivari AKR. Hepatitis. StatPearls Publishing; 2021. Available from URL: https://www.ncbi.nlm.nih.gov/books/NBK554549/.
3.
Lim JK, Nguyen MH, Kim WR, et al. Prevalence of Chronic Hepatitis B Virus Infection in the United States. Am J Gastroenterol 2020; 115: 1429–1438.
4.
Zheng Y, Wu J, Ding C, et al. Disease burden of chronic hepatitis B and complications in China from 2006 to 2050: an individual-based modeling study. Virol J 2020; 17(1): 132, doi: 10.1186/s12985-020-01393-z.
5.
Alberts CJ, Clifford GM, Georges D, et al. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: a systematic review. Lancet Gastroenterol Hepatol 2022; 7: 724–735.
6.
Muljono DH. Epidemiology of Hepatitis B and C in Republic of Indonesia. Euroasian J Hepato-Gastroenterology 2017; 7: 55.
7.
Tripathi N, Mousa OY. Hepatitis B. StatPearls Publishing; 2022. Available from URL: https://www.ncbi.nlm.nih.gov/books/NBK555945/.
8.
Smith AAA, Gale EC, Roth GA, et al. Nanoparticles Presenting Potent TLR7/8 Agonists Enhance Anti-PD-L1 Immunotherapy in Cancer Treatment. Biom-acromolecules 2020; 21: 3704–3712.
9.
Hu Y, Tang L, Zhu Z, et al. A novel TLR7 agonist as adjuvant to stimulate high quality HBsAg-specific immune responses in an HBV mouse model. J Transl Med 2020; 18: 112.
10.
Sameer AS, Nissar S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. Biomed Res Int 2021; 2021: 1157023, doi: 10.1155/2021/1157023.
11.
Chi H, Li C, Zhao FS, et al. Anti-tumor activity of toll-like receptor 7 agonists. Front Pharmacol 2017; 8: 304.
12.
Burns GS, Thompson AJ. Viral hepatitis B: clinical and epidemiological characteristics. Cold Spring Harb Perspect Med 2014; 4(12): a024935, doi: 10.1101/cshperspect.a024935.
13.
Higgins PA. Hepatitis B Virus. J Am Acad Physician Assist 2016; 29: 48–49, doi: 10.1097/01.JAA.0000484310.19556.82.
14.
Soi V, Daifi C, Yee J, et al. Pathophysiology and Treatment of Hepatitis B and C Infections in Patients with End-Stage Renal Disease. Adv Chronic Kidney Dis 2019; 26: 41–50.
15.
Nguyen MH, Wong G, Gane E, et al. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin Microbiol Rev 2020; 33: e00046-19.
16.
Pardee M. Diagnosis and Management of Hepatitis B and C. Nurs Clin North Am 2019; 54: 277–284.
17.
Yuen M-F, Chen D-S, Dusheiko GM, et al. Hepatitis B virus infection. Nat Rev Dis Prim 2018; 4: 18035.
18.
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9(6): 1486, doi: 10.3390/cells9061486.
19.
Chakravarty R, Das D, Sarkar N, et al. Role of TLR7 Agonist in Hepatitis B Infection: An In Vitro Study. J Clin Exp Hepatol 2014; 4: S20.
20.
Venkatakrishnan B, Zlotnick A. The Structural Biology of Hepatitis B Virus: Form and Function. Annu Rev Virol 2016; 3: 1–28.
21.
Boni C, Vecchi A, Rossi M, et al. TLR7 Agonist Increases Responses of Hepatitis B Virus–Specific T Cells and Natural Killer Cells in Patients with Chronic Hepati-tis B Treated with Nucleos(T)Ide Analogues. Gastroenterology 2018; 154: 1764–1777.
22.
Smith AAA, Gale EC, Roth GA, et al. Supporting information Nanoparticles presenting potent TLR 7/8 agonists enhance anti-PD-L1 immunotherapy in cancer treatment. Biomacromolecules 2020; 21(9): 3704–3712, doi: 10.1021/acs.biomac.0c00812.
23.
Hu K, Li J, Shen Y, et al. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations.
24.
J Control Release 2009; 134: 55–61.
25.
Ghasemi R, Abdollahi M, Emamgholi Zadeh E, et al. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci Reports 2018; 8: 1–13.
26.
Wu J, Zhao J, Zhang B, et al. Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. Int J Nanomedicine 2014; 9: 5261–5271.
27.
Taha MA, Singh SR, Dennis VA. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology 2012; 23(32): 325101, doi: 10.1088/0957-4484/23/32/325101.
28.
Dixit S, Singh SR, Yilma AN, et al. Poly (lactic acid)-poly (ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomedicine 2014; 10: 1311.
29.
Fairley SJ, Singh SR, Yilma AN, et al. Chlamydia trachomatis recombinant MOMP encapsulated in PLGAnanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: adesirable candidate nanovaccine. Int J Nanomedicine 2013; 8: 2085.
30.
Fosdick A, Zheng J, Pflanz S, et al. Pharmacokinetic and pharmacodynamic properties of gs-9620, a novel toll-like receptor 7 agonist, demonstrate interfer-on-stimulated gene induction without detectable serum interferon at low oral dosess. J Pharmacol Exp Ther 2014; 348: 96–105.
31.
Haegebaert RMS, Kempers M, Ceelen W, et al. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur
32.
J Pharm Biopharm 2022; 172: 16–30, doi: 10.1016/j.ejpb.2022.01.002.
33.
Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8: 777.
34.
Johnstone TC, Kulak N, Pridgen EM, et al. Nanoparticle encapsulation of mitaplatin and the effect thereof on in vivo properties. ACS Nano 2013; 7: 5675–5683.
35.
Almoustafa HA, Alshawsh MA, Chik Z. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. Int J Pharm 2017; 533: 275–284.
36.
Yin Q, Luo W, Mallajosyula VVA, et al. A universal TLR7-nanoparticle adjuvant promotes broad immune responses against heterologous strains of Influenza and SARS-CoV-2. Nat Mater 2023, doi: 10.1038/s41563-022-01464-2.
37.
Xu N, Yao H-P, Lv G-C, et al. Downregulation of TLR7/9 leads to deficient production of IFN-α from plasmacytoid dendritic cells in chronic hepatitis B. In-flamm Res 2012; 61: 997–1004.
38.
Das D, Sengupta I, Sarkar N, et al. Anti-hepatitis B virus (HBV) response of imiquimod based toll like receptor 7 ligand in hbv-positive human hepatocelluar carcinoma cell line. BMC Infect Dis 2017; 17: 76.
39.
Lanford RE, Guerra B, Chavez D, et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology 2013; 144: 1508–1517.
40.
Wildum S, Korolowicz KE, Suresh M, et al. Toll-Like Receptor 7 Agonist RG7854 Mediates Therapeutic Efficacy and Seroconversion in Woodchucks with Chronic Hepatitis B. Front Immunol 2022; 13: 884113.
41.
Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 2005; 79: 7269–7272.
42.
Ezzikouri S, Hoque Kayesh ME, Benjelloun S, et al. Targeting Host Innate and Adaptive Immunity to Achieve the Functional Cure of Chronic Hepatitis B. Vac-cines (Basel) 2020; 8(2): 216, doi: 10.3390/vaccines8020216.
43.
Mullins SR, Vasilakos JP, Deschler K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer 2019; 7: 244.
44.
Lucifora J, Bonnin M, Aillot L, et al. Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes. Sci Rep 2018; 8: 5390.
45.
Schlaepfer E, Speck RF. Anti-HIV activity mediated by natural killer and CD8+ cells after toll-like receptor 7/8 triggering. PLoS ONE 2008; 3: e1999.
46.
Borducchi EN, Liu J, Nkolola JP, et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 2018; 563: 360–364.
47.
Wu S, Wang W, Gao Y. Natural killer cells in hepatitis B virus infection. Brazilian J Infect Dis 2015; 19: 417–425.
48.
Marotel M, Villard M, Drouillard A, et al. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. Elife 2021; 10: e60095, doi: 10.7554/eLife.60095.
49.
Funk E, Kottilil S, Gilliam B, et al. Tickling the TLR7 to cure viral hepatitis. J Transl Med 2014; 12: 129.
50.
Kayesh ME, Kohara M, Tsukiyama-Kohara K. Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview. Int J Mol Sci 2021; 22(19): 10462, doi: 10.3390/ijms221910462.