Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Reproducibility and quality of hypertrophy-related training plans generated by GPT-4 and Google Gemini as evaluated by coaching experts

Tim Havers
1, 2
,
Lukas Masur
3
,
Eduard Isenmann
1, 4
,
Stephan Geisler
1
,
Christoph Zinner
5
,
Billy Sperlich
6
,
Peter Düking
3

  1. Department of Fitness and Health, IST University of Applied Sciences, Düsseldorf, Germany
  2. Faculty of Sport and Health Sciences, Technical University of Munich, Munich, German
  3. Department of Sports Science and Movement Pedagogy, Technische Universität Braunschweig, Braunschweig, Germany
  4. Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne
  5. Department of Sport, University of Applied Sciences for Police and Administration of Hesse, Wiesbaden, Germany
  6. Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Germany
Biol Sport. 2025;42(2):289–329
Online publish date: 2024/12/18
Article file
- 28_04304_Article_c.pdf  [1.73 MB]
Get citation
 
PlumX metrics:
 
1. Carvalho L, Junior RM, Barreira J, Schoenfeld BJ, Orazem J, Barroso R. Muscle hypertrophy and strength gains after resistance training with different volume-matched loads: a systematic review and meta-analysis. Appl Physiol Nutr Metab. 2022; 47(4):357–68. doi: 10.1139/apnm -2021-0515 Cited in: PubMed; PMID 35015560.
2. Lim C, Nunes EA, Currier BS, McLeod JC, Thomas ACQ, Phillips SM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc. 2022; 54(9):1546–59. doi: 10.1249 /MSS.0000000000002929 Cited in: PubMed; PMID 35389932.
3. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985). 2019; 126(1):30–43. doi: 10.1152/jappl physiol.00685.2018 Cited in: PubMed; PMID 30335577.
4. Schoenfeld B. Squatting kinematics and kinetics and their application to exercise performance. J Strength Cond Res. 2010; 24(12):3497–506. doi: 10.1519/JSC .0b013e3181bac2d7 Cited in: PubMed; PMID 20182386.
5. van Every DW, Coleman M, Plotkin DL, Zambrano H, van Hooren B, Larsen S, Nuckols G, Vigotsky AD, Schoenfeld BJ. Biomechanical, Anthropometric and Psychological Determinants of Barbell Bench Press Strength. Sports (Basel). 2022; 10(12). doi: 10.3390/sports 10120199 Cited in: PubMed; PMID 36548496.
6. Bernárdez-Vázquez R, Raya-González J, Castillo D, Beato M. Resistance Training Variables for Optimization of Muscle Hypertrophy: An Umbrella Review. Front Sports Act Living. 2022; 4949021. doi: 10.3389/fspor.2022.949021 Cited in: PubMed; PMID 35873210.
7. Camargo JBB de, Brigatto FA, Zaroni RS, Trindade TB, Germano MD, Junior ACT, Oliveira TP de, Marchetti PH, Prestes J, Lopes CR. Manipulating Resistance Training Variables to Induce Muscle Strength and Hypertrophy: A Brief Narrative Review. Int J Exerc Sci. 2022; 15(4):910–33. Cited in: PubMed; PMID 36157335.
8. Schoenfeld B, Fisher J, Grgic J, Haun C, Helms E, Phillips S, Steele J, Vigotsky A. Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. 1. 2021; 1(1). doi: 10.47206/ijsc.v1i1.81
9. Deng J, Lin Y. The Benefits and Challenges of ChatGPT: An Overview. FCIS. 2022; 2(2):81–3. doi: 10.54097/fcis.v2i2.4465
10. Dergaa I, Chamari K, Zmijewski P, Ben Saad H. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biol Sport. 2023; 40(2):615–22. doi: 10.5114/biolsport.2023 .125623 Cited in: PubMed; PMID 37077800.
11. Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med. 2023; 29(8):1930–40. doi: 10.1038/s41591 -023-02448-8 Cited in: PubMed; PMID 37460753.
12. Dergaa I, Fekih-Romdhane F, Hallit S, Loch AA, Glenn JM, Fessi MS, Ben Aissa M, Souissi N, Guelmami N, Swed S, El Omri A, Bragazzi NL, Ben Saad H. ChatGPT is not ready yet for use in providing mental health assessment and interventions. Front Psychiatry. 2023; 141277756. doi: 10.3389/fpsyt.2023.1277756 Cited in: PubMed; PMID 38239905.
13. Methnani J, Latiri I, Dergaa I, Chamari K, Ben Saad H. ChatGPT for Sample-Size Calculation in Sports Medicine and Exercise Sciences: A Cautionary Note. Int J Sports Physiol Perform. 2023; 18(10):1219–23. doi: 10.1123/ijspp .2023-0109 Cited in: PubMed; PMID 37536678.
14. Dergaa I, Saad HB, El Omri A, Glenn JM, Clark CCT, Washif JA, Guelmami N, Hammouda O, Al-Horani RA, Reynoso-Sánchez LF, Romdhani M, Paineiras-Domingos LL, Vancini RL, Taheri M, Mataruna-Dos-Santos LJ, Trabelsi K, Chtourou H, Zghibi M, Eken Ö, Swed S, Aissa MB, Shawki HH, El-Seedi HR, Mujika I, Seiler S, Zmijewski P, Pyne DB, Knechtle B, Asif IM, Drezner JA, Sandbakk Ø, Chamari K. Using artificial intelligence for exercise prescription in personalised health promotion: A critical evaluation of OpenAI’s GPT-4 model. Biol Sport. 2024; 41(2):221–41. doi: 10.5114 /biolsport.2024.133661 Cited in: PubMed; PMID 38524814.
15. Dergaa I, Ben Saad H, Ghouili H, M Glenn J, El Omri A, Slim I, Hasni Y, Taheri M, Ben Aissa M, Guelmami N, Al-Horani R, Washif JA, Shoib S, Mohammed Alyasiri O, Jose Mataruna- -Dos-Santos L, Ferreira Alves R, Ibrahim Ceylan H, Swed S, Z Alshahrani N, Chalghaf N, Dai H, Luigi Bragazzi N, Chamari K. Evaluating the Applicability and Appropriateness of ChatGPT as a Source for Tailored Nutrition Advice: A Multi-Scenario Study. NAJM. 2024;
16. Düking P, Sperlich B, Voigt L, van Hooren B, Zanini M, Zinner C. ChatGPT Generated Training Plans for Runners are not Rated Optimal by Coaching Experts, but Increase in Quality with Additional Input Information. Journal of Sports Science & Medicine. 2024; 23(1):56–72. doi: 10.52082/jssm.2024.56 Cited in: PubMed; PMID 38455449.
17. Washif JA, Pagaduan J, James C, Dergaa I, Beaven CM. Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription. Biol Sport. 2024; 41(2):209–20. doi: 10.5114/biol sport.2024.132987 Cited in: PubMed; PMID 38524820.
18. Haff G, Triplett NT, editors. Essentials of strength training and conditioning. Champaign, IL, Windsor, ON, Leeds: Human Kinetics; 2016. 735 p. eng.
19. Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, Faix DJ, Goodman AM, Longhurst CA, Hogarth M, Smith DM. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med. 2023; 183(6):589–96. doi: 10.1001/jama internmed.2023.1838 Cited in: PubMed; PMID 37115527.
20. Lukac S, Dayan D, Fink V, Leinert E, Hartkopf A, Veselinovic K, Janni W, Rack B, Pfister K, Heitmeir B, Ebner F. Evaluating ChatGPT as an Adjunct for the Multidisciplinary Tumor Board Decision-Making in Primary Breast Cancer Cases; 2023.
21. Seth I, Cox A, Xie Y, Bulloch G, Hunter-Smith DJ, Rozen WM, Ross RJ. Evaluating Chatbot Efficacy for Answering Frequently Asked Questions in Plastic Surgery: A ChatGPT Case Study Focused on Breast Augmentation. Aesthet Surg J. 2023; 43(10):1126–35. doi: 10.1093/asj/sjad140 Cited in: PubMed; PMID 37158147.
22. Thompson PD, Arena R, Riebe D, Pescatello LS. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013; 12(4):215–7. doi: 10.1249/JSR.0b013e31829a68cf Cited in: PubMed; PMID 23851406.
23. Jeffries AC, Marcora SM, Coutts AJ, Wallace L, McCall A, Impellizzeri FM. Development of a Revised Conceptual Framework of Physical Training for Use in Research and Practice. Sports Med. 2022; 52(4):709–24. doi: 10 .1007/s40279-021-01551-5 Cited in: PubMed; PMID 34519982.
24. Stone M, Plisk S, Collins D. Training principles: evaluation of modes and methods of resistance training--a coaching perspective. Sports Biomech. 2002; 1(1):79–103. doi: 10.1080 /14763140208522788 Cited in: PubMed; PMID 14658137.
25. Schoenfeld B, Fisher J, Grgic J, Haun C, Helms E, Phillips S, Steele J, Vigotsky A. Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. 1. 2021; 1(1). doi: 10.47206 /ijsc.v1i1.81
26. Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006; 97(6):643–63. doi: 10.1007/s00421 -006-0238-1 Cited in: PubMed; PMID 16845551.
27. Coratella G. Appropriate Reporting of Exercise Variables in Resistance Training Protocols: Much more than Load and Number of Repetitions. Sports Med-Open. 2022; 8(1):99. doi: 10.1186/s40798-022-00492-1 Cited in: PubMed; PMID 35907047.
28. Androulakis Korakakis P, Wolf M, Coleman M, Burke R, Piñero A, Nippard J, Schoenfeld BJ. Optimizing Resistance Training Technique to Maximize Muscle Hypertrophy: A Narrative Review. Journal of Functional Morphology and Kinesiology. 2023; 9(1):9. doi: 10.3390/jfmk9010009 Cited in: PubMed; PMID 38249086.
29. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, Taylor L, Kalman D, Smith-Ryan AE, Kreider RB, Willoughby D, Arciero PJ, VanDusseldorp TA, Ormsbee MJ, Wildman R, Greenwood M, Ziegenfuss TN, Aragon AA, Antonio J. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017; 1433. doi: 10.1186 /s12970-017-0189-4 Cited in: PubMed; PMID 28919842.
30. Fleiss JL. Measuring nominal scale agreement among many raters. Psychological Bulletin. 1971; 76(5):378–82. doi: 10.1037/h0031619
31. Zaleski AL, Berkowsky R, Craig KJT, Pescatello LS. Comprehensiveness, Accuracy, and Readability of Exercise Recommendations Provided by an AI-Based Chatbot: Mixed Methods Study. JMIR medical education. 2024; 10e51308. doi: 10.2196/51308 Cited in: PubMed; PMID 38206661.
32. Moreno-Villanueva A, Pino-Ortega J, Rico-González M. Effect of Repetition Duration—Total and in Different Muscle Actions—On the Development of Strength, Power, and Muscle Hypertrophy: A Systematic Review. Strength & Conditioning Journal. 2022; 44(5):39–56. doi: 10.1519/SSC .0000000000000695
33. Schoenfeld BJ, Peterson MD, Ogborn D, Contreras B, Sonmez GT. Effects of Low-vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J Strength Cond Res. 2015; 29(10):2954–63. doi: 10.1519 /JSC.0000000000000958 Cited in: PubMed; PMID 25853914.
34. Eysenbach G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversation With ChatGPT and a Call for Papers. JMIR medical education. 2023; 9e46885. doi: 10.2196/46885 Cited in: PubMed; PMID 36863937.
35. Enes A, Souza EO de, Souza-Junior TP. Effects of Different Weekly Set Progressions on Muscular Adaptations in Trained Males: Is There a Dose-Response Effect? Med Sci Sports Exerc. 2024; 56(3):553–63. doi: 10.1249/MSS .0000000000003317 Cited in: PubMed; PMID 37796222.
36. Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci. 2017; 35(11):1073–82. doi: 10.1080 /02640414. 2016.1210197 Cited in: PubMed; PMID 27433992.
37. Warneke K, Lohmann LH, Lima CD, Hollander K, Konrad A, Zech A, Nakamura M, Wirth K, Keiner M, Behm DG. Physiology of Stretch-Mediated Hypertrophy and Strength Increases: A Narrative Review. Sports Med. 2023; 53(11):2055–75. doi: 10.1007/s40279 -023-01898-x Cited in: PubMed; PMID 37556026
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.