eISSN: 2299-0054
ISSN: 1895-4588
Videosurgery and Other Miniinvasive Techniques
Current issue Archive Manuscripts accepted About the journal Supplements Editorial board Reviewers Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2023
vol. 18
 
Share:
Share:
Urology
abstract:
Original paper

The LMR-SSIGN-MAPS model predicts disease-free survival in patients with localized clear cell renal cell carcinoma

Hongzhuang Wen
1
,
Yong Zhang
2
,
Zhan Yang
1
,
Zhao Zhai
2
,
Zhenwei Han
1
,
Hu Wang
1
,
Mingshuai Wang
1
,
Hongzhe Shi
2
,
Xi Chen
2
,
Wasilijiang Wahafu
2
,
Kaopeng Guan
2
,
Xiaolu Wang
1

  1. Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
  2. National Cancer Centre, National Clinical Research Centre for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Videosurgery Miniinv 2023; 18 (2): 313–327
Online publish date: 2022/12/28
View full text Get citation
 
PlumX metrics:
Introduction
Prediction models are increasingly being used to predict outcomes after surgery, and such a model would be a precious tool for patients with clear cell renal cell carcinoma (ccRCC) after surgery. Aim: To develop a comprehensive model for predicting disease-free survival (DFS) in patients with localized ccRCC.

Material and methods
In a retrospective analysis of 612 patients, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to identify significant predictors, and then risk factors were used to construct a prognostic model. Harrell’s concordance index (C-index) was used to assess the accuracy of the model.

Results
The lymphocyte-to-monocyte ratio (LMR), Mayo Clinic stage, size, grade, necrosis score (SSIGN), and Mayo adhesive probability score (MAPS) were the significant risk factors screened by LASSO Cox regression and reconfirmed by multivariate Cox regression analysis in 44 variables. Then a model was constructed by combining the LMR, SSIGN, and MAPS. The C-index of the LMR-SSIGN-MAPS model was greater than the SSIGN score alone. Kaplan-Meier survival analysis demonstrated a significant association between higher LMR-SSIGN-MAPS score and poorer DFS.

Conclusions
The LMR-SSIGN-MAPS model, which consists of preoperative inflammation biomarkers, a perinephric adipose tissue image-based scoring system, and pathological features, showed the strengths of easy-to-use and high predictability and might also be used as a promising prognosis model in predicting DFS for patients with localized ccRCC.

keywords:

biomarkers, renal cell carcinoma, disease-free survival, prognosis, regression analysis

  
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.