Current issue
Archive
Manuscripts accepted
About the journal
Editorial board
Reviewers
Abstracting and indexing
Contact
Instructions for authors
Publication charge
Ethical standards and procedures
Editorial System
Submit your Manuscript
|
2/2022
vol. 36 Original article
The effect of transcranial direct current stimulation on pain, range of motion, and balance in sportspersons with ankle sprain: a randomized controlled trial
Rekha Chaturvedi
1
,
Rahul Jogi
1
,
Shabnam Joshi
1
,
Vandana Yadav
1
Advances in Rehabilitation, 2022, 36(2), 32–38
Online publish date: 2022/05/20
Article file
- 2022-02-ar-04-popr.pdf
[0.60 MB]
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
1. Shah S, Thomas AC, Noone JM, Blanchette CM, Wikstrom EA. Incidence and Cost of Ankle Sprains in United States Emergency Departments. Sports Health. 2016; 8(6): 547-52. 2.
Tanen L, Docherty CL, Van Der Pol B, Simon J, Schrader J. Prevalence of chronic ankle instability in high school and division I athletes. Foot Ankle Spec. 2014; 7(1): 37-44. 3.
Verhagen RA, de Keizer G, van Dijk CN. Long-term follow-up of inversion trauma of the ankle. Arch Orthop Trauma Surg. 1995; 114(2): 92-6. 4.
Yeung MS, Chan KM, So CH, Yuan WY. An epidemiological survey on ankle sprain. Br J Sports Med. 1994; 28(2): 112-6. 5.
Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005; 39(3): e14. 6.
Gribble PA, Delahunt E, Bleakley C, Caulfield B, Docherty CL, Fourchet F, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013; 43(8): 585-91. 7.
Pietrosimone BG, Gribble PA. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train. 2012; 47(6): 621-6. 8.
Kim KM, Kim JS, Cruz-Díaz D, Ryu S, Kang M, Taube W. Changes in Spinal and Corticospinal Excitability in Patients with Chronic Ankle Instability: A Systematic Review with Meta-Analysis. J Clin Med. 2019; 8(7): 1037. 9.
Needle AR, Lepley AS, Grooms DR. Central Nervous System Adaptation After Ligamentous Injury: a Summary of Theories, Evidence, and Clinical Interpretation. Sports Med. 2017; 47(7): 1271-88. 10.
Ma Y, Yin K, Zhuang W, Zhang C, Jiang Y, Huang J, et al. Effects of Combining High-Definition Transcranial Direct Current Stimulation with Short-Foot Exercise on Chronic Ankle Instability: A Pilot Randomized and Do-uble-Blinded Study. Brain Sci. 2020; 10(10): 749. 11.
Hung YJ. Neuromuscular control and rehabilitation of the unstable ankle. World J Orthop. 2015; 6(5): 434-8. 12.
Henriques IAD, Lattari E, Torres G, Rodrigues GM, Oliveira BRR, Neto GAM, et al. Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals? Neurosci Lett. 2019; 707: 134311. 13.
Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci Res. 2017; 114: 55-61. 14.
Bruce AS, Howard JS, VAN Werkhoven H, McBride JM, Needle AR. The Effects of Transcranial Direct Current Stimulation on Chronic Ankle Instability. Med Sci Sports Exerc. 2020; 52(2): 335-44. 15.
Hazime FA, Baptista AF, de Freitas DG, Monteiro RL, Maretto RL, Hasue RH, et al. Treating low back pain with combined cerebral and peripheral electrical stimulation: A randomized, double-blind, factorial clini-cal trial. Eur J Pain. 2017; 21(7): 1132-43. 16.
Mendonca ME, Simis M, Grecco LC, Battistella LR, Baptista AF, Fregni F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial. Front Hum Neurosci. 2016; 10: 68. 17.
Chaturvedi R, Joshi S. Effect of transcranial direct current stimulation (tDCS) and transcutaneous electrical nerve stimulation (TENS) in knee osteoarthritis. Physiother Quart. 2021; 29(3): 68-75. 18.
Kisler LB, Gurion I, Granovsky Y, Sinai A, Sprecher E, Shamay-Tsoory S, et al. Can a single pulse trans-cranial magnetic stimulation targeted to the motor cortex interrupt pain processing? PLoS One. 2018; 13(4): e0195739. 19.
García-Larrea L, Peyron R, Mertens P, et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain. 1999; 83(2): 259-73. 20.
Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011; 17(1): 37-53. 21.
Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci Res. 2017; 114: 55-61. 22.
Sriraman A, Oishi T, Madhavan S. Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 2014; 1581: 23-9. 23.
Deldar Z, Rustamov N, Bois S, Blanchette I, Piché M. Enhancement of pain inhibition by working memory with anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex. J Physiol Sci. 2018; 68(6): 825-36. 24.
Farina D, Negro F, Dideriksen JL. The effective neural drive to muscles is the common synaptic input to motor neurons. J Physiol. 2014; 592(16): 3427-41. 25.
McKeon PO, Wikstrom EA. Sensory-Targeted Ankle Rehabilitation Strategies for Chronic Ankle Instability. Med Sci Sports Exerc. 2016; 48(5): 776-84. 26.
Hiller CE, Nightingale EJ, Raymond J, Kilbreath SL, Burns J, Black DA, et al. Prevalence and impact of chronic musculoskeletal ankle disorders in the community. Arch Phys Med Rehabil. 2012; 93(10): 1801-7.
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
|
|