Biol Sport. 2025;42(3):89–98
1. Hackney AC. Sex hormones, exercise and women: Scientific and clinical aspects. Sex Hormones, Exercise and Women: Scientific and Clinical Aspects 2016; 1–315. doi: 10.1007/978-3-319 -44558-8/COVER.
2.
Paludo AC, Paravlic A, Dvořáková K, et al. The Effect of Menstrual Cycle on Perceptual Responses in Athletes: A Systematic Review With Meta-Analysis. Front Psychol 2022; 13:926854. doi: 10.3389/FPSYG.2022.926854 /BIBTEX.
3.
Kissow J, Jacobsen KJ, Gunnarsson TP, et al. Effects of Follicular and Luteal Phase-Based Menstrual Cycle Resistance Training on Muscle Strength and Mass. Sports Medicine 2022; 52:2813–2819. doi: 10.1007/S40279-022-01679-Y /METRICS.
4.
Mattu AT, Iannetta D, MacInnis MJ, et al. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand J Med Sci Sports 2020; 30:472–484. doi: 10.1111/SMS.13590.
5.
Janse De Jonge XAK, Thompson MW, Chuter VH, et al. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med Sci Sports Exerc 2012; 44:2190–2198. doi: 10.1249/MSS.0B013E3182656F13.
6.
Gür H. Concentric and eccentric isokinetic measurements in knee muscles during the menstrual cycle: A special reference to reciprocal moment ratios. Arch Phys Med Rehabil 1997; 78:501–505. doi: 10.1016/S0003 -9993(97)90164-7.
7.
Janse de Jonge XAK. Effects of the Menstrual Cycle on Exercise Performance. Sports Medicine 2003; 33:833–851. doi: 10.2165/00007256 -200333110-00004.
8.
Lebrun CM, McKenzie DC, Prior JC, et al. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 1995; 27:437–444. doi: 10.1249 /00005768-199503000-00022.
9.
Fridén C, Hirschberg AL, Saartok T. Muscle Strength and Endurance Do Not Significantly Vary Across 3 Phases of the Menstrual Cycle in Moderately Active Premenopausal Women. Clinical Journal of Sport Medicine 2003; 13:238–241. doi: 10.1097/00042752-200307000 -00007.
10.
Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. Journal of Physiology 1996; 493:267–272. doi: 10.1113 /jphysiol.1996.sp021381.
11.
Bambaeichi E, Reilly T, Cable NT, et al. The isolated and combined effects of menstrual cycle phase and time-of-day on muscle strength of eumenorrheic females. Chronobiol Int 2004; 21:645–660. doi: 10.1081/CBI-1200 39206.
12.
García-Pinillos F, Bujalance-Moreno P, Lago-Fuentes C, et al. Effects of the menstrual cycle on jumping, sprinting and force-velocity profiling in resistance trained women: A preliminary study. Int J Environ Res Public Health 2021; 18. doi: 10.3390/ijerph18094830.
13.
Romero-Moraleda B, Coso J Del, Gutiérrez-Hellín J, et al. The Influence of the Menstrual Cycle on Muscle Strength and Power Performance. J Hum Kinet 2019; 68:123. doi: 10.2478/HUKIN -2019-0061.
14.
Allen AM, McRae-Clark AL, Carlson S, et al. Determining Menstrual Phase in Human Biobehavioral Research: A Review with Recommendations. Exp Clin Psychopharmacol 2016; 24:1. doi: 10.1037/PHA0000057.
15.
Mercer RAJ, Russell JL, McGuigan LC, et al. Finding the Signal in the Noise – Interday Reliability and Seasonal Sensitivity of 84 Countermovement Jump Variables in Professional Basketball Players. J Strength Cond Res 2023; 37:394–402. doi: 10.1519/JSC .0000000000004182.
16.
Bishop C, Jordan M, Torres-Ronda L, et al. Selecting Metrics That Matter: Comparing the Use of the Countermovement Jump for Performance Profiling, Neuromuscular Fatigue Monitoring, and Injury Rehabilitation Testing. Strength Cond J 2023; Vol Ahead of Print. doi: 10.1519/SSC .0000000000000772.
17.
Vernon A, Joyce C, Banyard HG. Readiness to train: Return to baseline strength and velocity following strength or power training. Int J Sports Sci Coach 2020; 15. doi: 10.1177/17479541199 00120.
18.
Cormie P, McBride JM, McCaulley GO. Power-Time, Force-Time, and Velocity-Time Curve Analysis of the Countermovement Jump: Impact of Training. J Strength Cond Res 2009; 23:177–186. doi: 10.1519/JSC.0b013e 3181889324.
19.
Comfort P, Stewart A, Bloom L, et al. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J Strength Cond Res 2014; 28:173–177. doi: 10.1519 /JSC.0b013e318291b8c7.
20.
Pérez-Castilla A, García-Ramos A. Changes in the Load–Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs. Int J Sports Physiol Perform 2020; 15:1460–1466. doi: 10.1123/IJSPP .2019-0840.
21.
Dorrell HF, Moore JM, Gee TI. Comparison of individual and group-based load-velocity profiling as a means to dictate training load over a 6-week strength and power intervention. J Sports Sci 2020; 38. doi: 10.1080/02640414 .2020.1767338.
22.
Banyard HG, Tufano JJ, Weakley JJS, et al. Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1-repetition-maximum percentage-based training. Int J Sports Physiol Perform 2021; 16. doi: 10.1123/IJSPP.2019 -0999.
23.
Behm DG, Sale DG. Velocity Specificity of Resistance Training. Sports Medicine 1993; 15:374–388. doi: 10.2165 /00007256-199315060-00003.
24.
Banyard HG, Nosaka K, Haff GG. Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J Strength Cond Res 2017; 31:1897–1904. doi: 10.1519 /JSC.0000000000001657.
25.
Scott TJ, Black CR, Quinn J, et al. Validity and reliability of the session-RPE method for quantifying training in Australian football: a comparison of the CR10 and CR100 scales. J Strength Cond Res 2013; 27:270–276. doi: 10.1519/JSC.0B013 E3182541D2E.
26.
Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci 2008; 12:207–218. doi: 10.1080 /10913670802349766.
27.
McMahon JJ, Suchomel TJ, Lake JP, et al. Understanding the key phases of the countermovement jump force-time curve. Strength Cond J 2018; 40:96–106. doi: 10.1519/SSC .0000000000000375.
28.
Bishop C, Turner A, Jordan M, et al. A Framework to Guide Practitioners for Selecting Metrics during the Countermovement and Drop Jump Tests. Strength Cond J 2022; 44:95–103. doi: 10.1519/SSC.0000000000000677.
29.
González-García J, Aguilar-Navarro M, Giráldez-Costas V, et al. Time Course of Jump Recovery and Performance After Velocity-Based Priming and Concurrent Caffeine Intake. Res Q Exerc Sport 2022; Publish ah.: 1–13. doi: 10.1080 /02701367.2022.2041162.
30.
Elliott-Sale KJ, Minahan CL, de Jonge XAKJ, et al. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Medicine 2021; 51:843–861. doi: 10.1007/s40279 -021-01435-8.
31.
Janse de Jonge X, Thompson Belinda, Han Ahreum. Methodological Recommenda tions for Menstrual Cycle Research in Sports and Exercise. Med Sci Sports Exerc 2019; 51:2610–2617. doi: 10.1249/ MSS.0000000000002073.
32.
Cormack SJ, Newton RU, McGulgan MR, et al. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform 2008; 3. doi: 10.1123/ ijspp.3.2.131.
33.
Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009; 41:3–12. doi: 10.1249 /MSS.0b013e31818cb278.
34.
Newton RU, Kraemer WJ. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength and Conditioning 1994; 16. doi: 10.1519/1073-6840(1994)016 <0020: DEMPIF<2.3.CO; 2.
35.
Eiling E, Bryant AL, Petersen W, et al. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surgery, Sports Traumatology, Arthroscopy 2007; 15. doi: 10.1007 /s00167-006-0143-5.
36.
Julian R, Hecksteden A, Fullagar HHK, et al. The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One 2017; 12. doi: 10.1371/journal.pone.0173951.
37.
Rael B, Romero-Parra N, Alfaro-Magallanes VM, et al. Body composition over the menstrual and oral contraceptive cycle in trained females. Int J Sports Physiol Perform 2021; 16. doi: 10.1123/IJSPP.2020-0038.
38.
Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med 2014; 35. doi: 10.1055/s-0033-1363985.
39.
Smith MJ, Keel JC, Greenberg BD, et al. Menstrual cycle effects on cortical excitability. Neurology 1999; 53:2069–2072.
40.
Smith SS, Woodward DJ, Chapin JK. Sex steroids modulate motor-correlated increases in cerebellar discharge. Brain Res 1989; 476:307–316. doi: 10.1016/0006-8993(89)91251-1.
41.
Montgomery MM, Shultz SJ. Isometric Knee-Extension and Knee-Flexion Torque Production During Early Follicular and Postovulatory Phases in Recreationally Active Women. J Athl Train 2010; 45:586–593. doi: 10.4085/1062 -6050-45.6.586.
42.
de Jonge XAKJ, Boot CRL, Thom JM, et al. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 2001; 530:161–166. doi: 10.1111 /j.1469-7793.2001.0161m.x.
43.
Thompson B, Almarjawi A, Sculley D, et al. The Effect of the Menstrual Cycle and Oral Contraceptives on Acute Responses and Chronic Adaptations to Resistance Training: A Systematic Review of the Literature. Sports Med 2020; 50:171–185. doi: 10.1007/S40279 -019-01219-1.
44.
Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc 1998; 30:1164–1168. doi: 10.1097/0000 5768-199807000-00023.
45.
Cook CJ, Fourie P, Crewther BT. Menstrual variation in the acute testosterone and cortisol response to laboratory stressors correlate with baseline testosterone fluctuations at a within- and between-person level. Stress 2021; 24. doi: 10.1080/1025 3890.2020.1860937.
46.
Sydney MG, Wollin M, Chapman DW, et al. Impaired pre-competition wellbeing measures can negatively impact running performance in developmental youth female soccer players. Biol Sport 2024; 41. doi: 10.5114/biolsport.2024 .129480.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.