1. Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal drug discovery for chronic disease: history, new discoveries and new approaches. Biomolecules 2023; 13: 986. doi: 10.3390/biom13060986.
2.
Lallemand F, Schmitt M, Bourges JL, Gurny R, Benita S, Garrigue JS. Cyclosporine A delivery to the eye: a comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm 2017; 117: 14-28.
3.
Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C. Cyclosporine biosynthesis in tolypocladium inflatum benefits fungal adaptation to the environment. mBio 2018; 9: e01211-18. doi: 10.1128/mBio.01211-18.
4.
Olivieri I, Salvarani C, Cantini F et al. Therapy with cyclosporine in psoriatic arthritis. Semin Arthritis Rheum 1997; 27: 36-43.
5.
Chighizola CB, Ong VH, Meroni PL. The use of cyclosporine A in rheumatology: a 2016 comprehensive review. Clin Rev Allergy Immunol 2017; 52: 401-423.
6.
Tocci MJ, Sigal NH. Recent advances in the mechanism of action of cyclosporine and FK506. Curr Opin Nephrol Hypertens 1992; 1: 236-242.
7.
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32: 1267-1284.
8.
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8: 110. DOI: 10.1038/s41392- 023-01377-9.
9.
Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397: 530-534.
10.
Landewé RB, van den Borne BE, Breedveld FC, Dijkmans BA. Does cyclosporin A cause cancer? Nat Med 1999; 5: 714. DOI: 10.1038/10417.
11.
Okubo Y, Natsume S, Usui K, Amaya M, Tsuboi R. Low-dose, short-term ciclosporin (Neoral(R)) therapy is effective in improving patients’ quality of life as assessed by Skindex-16 and GHQ-28 in mild to severe psoriasis patients. J Dermatol 2011; 38: 465-472.
12.
Väkevä L, Reitamo S, Pukkala E, Sarna S, Ranki A. Long-term follow- up of cancer risk in patients treated with short-term cyclosporine. Acta Derm Venereol 2008; 88: 117-120.
13.
Yazdanbakhsh K, Choi JW, Li Y, Lau LF, Choi Y. Cyclosporin A blocks apoptosis by inhibiting the DNA binding activity of the transcription factor Nur77. Proc Natl Acad Sci U S A 1995; 92: 437-441.
14.
Boland J, Atkinson K, Britton K, Darveniza P, Johnson S, Biggs J. Tissue distribution and toxicity of cyclosporin A in the mouse. Pathology 1984; 16: 117-123.
15.
Twentyman PR. A possible role for cyclosporins in cancer chemotherapy. Anticancer Res 1988; 8 (5A): 985-993.
16.
Werneck MB, Hottz E, Bozza PT, Viola JP. Cyclosporin A inhibits colon cancer cell growth independently of the calcineurin pathway. Cell Cycle 2012; 11: 3997-4008.
17.
MMinguillón J, Morancho B, Kim SJ, López-Botet M, Aramburu J. Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-beta1 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-beta1. J Leukoc Biol 2005; 77: 748-758.
18.
Jiang K, He B, Lai L, et al. Cyclosporine A inhibits breast cancer cell growth by downregulating the expression of pyruvate kinase subtype M2. Int J Mol Med 2012; 30: 302-308.
19.
Clevenger CV, Zheng J, Harrington K, Zeng X. Abstract P2-19-04: Anti-Jak2 and breast cancer activity of NIM811, a non-immunosuppressive cyclosporine A analog. Cancer Res 2010; 70 (24 Supplement): P2-19-04.
20.
Kawahara T, Kashiwagi E, Ide H, et al. Cyclosporine A and tacrolimus inhibit bladder cancer growth through down-regulation of NFATc1. Oncotarget 2015; 6: 1582-1593.
21.
Sakai M, Miyake H, Tashiro S, Okumura Y, Kido H. Inhibitory effect of FK506 and cyclosporine A on the growth and invasion of human liver cancer cells. J Med Invest 2004; 51: 63-69.
22.
Muñoz M, Rosso M, González A, Saenz J, Coveñas R. The broad- spectrum antitumor action of cyclosporin A is due to its tachykinin receptor antagonist pharmacological profile. Peptides 2010; 31: 1643-1648.
23.
Zupanska A, Dziembowska M, Ellert-Miklaszewska A, Gaweda- Walerych K, Kaminska B. Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Neurochem Int 2005; 47: 430-441.
24.
Kim HS, Choi SI, Jeung EB, Yoo YM. Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells. PLoS One 2014; 9: e108981. DOI: 10.1371/journal.pone.0108981.
25.
Ciechomska IA, Kaminska B. ER stress and autophagy contribute to CsA-induced death of malignant glioma cells. Autophagy 2012; 8: 1526-1528.
26.
Filippi S, Paccosi E, Balzerano A, et al. CSA antisense targeting enhances anticancer drug sensitivity in breast cancer cells, including the triple-negative subtype. Cancers (Basel) 2022; 14: 1687. DOI: 10.3390/cancers14071687.
27.
Kim JH, Chung JB, Park IS, et al. Combined use of tamoxifen, cyclosporin A, and verapamil for modulating multidrug resistance in human hepatocellular carcinoma cell lines. Yonsei Med J 1993; 34: 35-44.
28.
Liu Z, Jiang L, Li Y, et al. Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2(+)/calcineurin/Erk pathway. EBioMedicine 2019; 42: 326-339.
29.
Shou J, You L, Yao J, et al. Cyclosporine A sensitizes human non-small cell lung cancer cells to gefitinib through inhibition of STAT3. Cancer Lett 2016; 379: 124-133.
30.
Andersson Y, Engebraaten O, Fodstad O. Synergistic anti-cancer effects of immunotoxin and cyclosporin in vitro and in vivo. Br J Cancer 2009; 101: 1307-1315.
31.
Pyen JS, Kim SK, Choi SJ, Park YS, Cho HC, Han YP. The effect of cyclosporin A on the growth of human glioma cell lines. Arch Pharm Res 1997; 20: 379-383.
32.
Han X, Yoon SH, Ding Y, et al. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncol Rep 2010; 23: 1053-1062.
33.
Dietel M, Herzig I, Reymann A, et al. Secondary combined resistance to the multidrug-resistance-reversing activity of cyclosporin A in the cell line F4-6RADR-CsA. J Cancer Res Clin Oncol 1994; 120: 263-271.
34.
Lim HW, Kim KW. Anti-cancer effect of Cyclosporin A on oral squamous cell carcinoma cell line. Journal Korean Assoc Oral Maxillofac Surg 2024; 50: 121-174.
35.
Khan MM, Torchilin VP. Recent trends in nanomedicine-based strategies to overcome multidrug resistance in tumors. Cancers (Basel) 2022; 14: 4123. doi: 10.3390/cancers14174123.
36.
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for overcoming cancer drug resistance. Pharmaceutics 2022; 14: 1606. DOI: 10.3390/pharmaceutics14081606.
37.
Patel D, Wairkar S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv Transl Res 2019; 9: 1067-1081.
38.
Al-Lawati H, Aliabadi HM, Makhmalzadeh BS, Lavasanifar A. Nanomedicine for immunosuppressive therapy: achievements in pre-clinical and clinical research. Expert Opin Drug Deliv 2018; 15: 397-418.
39.
Guada M, Beloqui A, Kumar MN, et al. Reformulating cyclosporine A (CsA): more than just a life cycle management strategy. J Control Release 2016; 225: 269-282.
40.
Trombino S, Curcio F, Poerio T, et al. Chitosan membranes filled with cyclosporine A as possible devices for local administration of drugs in the treatment of breast cancer. Molecules 2021; 26: 1889. DOI: 10.3390/molecules26071889.
41.
Alam A, Locher KP. Structure and mechanism of human ABC transporters. Annu Rev Biophys 2023; 52: 275-300.
42.
Gao W, Lin Z, Chen M, et al. The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression. Int J Nanomedicine 2014; 9: 3425-3437.
43.
Chen F, Zhang H, Jiang L, Wei W, Liu C, Cang S. Enhancing the cytotoxic efficacy of combined effect of doxorubicin and Cyclosporin encapsulated photoluminescent graphene dotted mesoporous nanoparticles against lung cancer cell-specific drug targeting for the nursing care of cancer patients. J Photochem Photobiol B 2019; 198: 111578. DOI: 10.1016/j.jphotobiol.2019.111578.
44.
Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 2000; 21: 1-7.
45.
Xu L, Li H, Wang Y, Dong F, Wang H, Zhang S. Enhanced activity of doxorubicin in drug resistant A549 tumor cells by encapsulation of P-glycoprotein inhibitor in PLGA-based nanovectors. Oncol Lett 2014; 7: 387-392.
46.
Sarisozen C, Vural I, Levchenko T, Hincal AA, Torchilin VP. PEG- PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Deliv 2012; 19: 169-176.
47.
Krishna R, St-Louis M, Mayer LD. Increased intracellular drug accumulation and complete chemosensitization achieved in multidrug-resistant solid tumors by co-administering valspodar (PSC 833) with sterically stabilized liposomal doxorubicin. Int J Cancer 2000; 85: 131-141.
48.
Nguyen TT, Duong VA, Maeng HJ. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics 2021; 13: 1103. DOI: 10.3390/pharmaceutics13071103.
49.
Cui W, Zhao H, Wang C, et al. Co-encapsulation of docetaxel and cyclosporin A into SNEDDS to promote oral cancer chemotherapy. Drug Deliv 2019; 26: 542-550.
50.
Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine 2016; 11: 4077-4091.
51.
Guan Q, Li Y, Zhang H, et al. Laser-responsive multi-functional nanoparticles for efficient combinational chemo-photodynamic therapy against breast cancer. Colloids Surf B Biointerfaces 2022; 216: 112574. DOI: 10.1016/j.colsurfb.2022.112574.
52.
Vahdati S, Lamprecht A. Membrane-fusing vehicles for re-sensitizing transporter-mediated multiple-drug resistance in cancer. Pharmaceutics 2024; 16: 493. DOI: 10.3390/pharmaceutics16040493.
53.
Han W, Shi L, Ren L, et al. A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 2018; 3: 16. DOI: 10.1038/s41392-018-0019-4.
54.
Wu K, Chang Q, Lu Y, et al. Gefitinib resistance resulted from STAT3-mediated Akt activation in lung cancer cells. Oncotarget 2013; 4: 2430-2438.
55.
Abdelazem AZ, Lee SH. Synthesis of two novel derivatives of cyclosporin a and evaluation of their antiproliferative effect on cancer cell lines. Bulletin of Pharmaceutical Sciences Assiut University 2022; 45: 191-199.
56.
Selvaggi K, Saria EA, Schwartz R, et al. Phase I/II study of murine monoclonal antibody-ricin A chain (XOMAZYME-Mel) immunoconjugate plus cyclosporine A in patients with metastatic melanoma. J Immunother Emphasis Tumor Immunol 1993; 13: 201-207.
57.
Gu L, Jin W, Kan L, Wang X, Shan C, Fan H. A retrospective study to compare the use of tacrolimus and cyclosporine in combination with adriamycin in post-transplant liver cancer patients. Cell Biochem Biophys 2015; 71: 565-570.
58.
Richman CM, Denardo SJ, O’Donnell RT, et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res 2005; 11: 5920-5927.
59.
Shafizadeh M, Farzaneh F, Kankam SB, Jangholi E, Shafizadeh Y, Khoshnevisan A. Effects of postoperative intravenous cyclosporine treatment on the survival and functional performance status of patients with glioblastoma: a randomized, triple-blinded, placebo- controlled clinical trial. World Neurosurg 2023; 176: e548-e556. DOI: 10.1016/j.wneu.2023.05.101.
60.
Bhardwaj R, Collins JL, Stringfellow J, et al. P-glycoprotein and breast cancer resistance protein transporter inhibition by cyclosporine and quinidine on the pharmacokinetics of oral rimegepant in healthy subjects. Clin Pharmacol Drug Dev 2022; 11: 889-897.
61.
Tsimberidou A, Estey E, Cortes J, et al. Gemtuzumab, fludarabine, cytarabine, and cyclosporine in patients with newly diagnosed acute myelogenous leukemia or high-risk myelodysplastic syndromes. Cancer 2003; 97: 1481-1487.
62.
Morgan RJ, Jr., Synold TW, Gandara D, et al. Phase II trial of carboplatin and infusional cyclosporine in platinum-resistant recurrent ovarian cancer. Cancer Chemother Pharmacol 2004; 54: 283-289.
63.
Helgason HH, Koolen SL, Werkhoven E, et al. Phase II and pharmacological study of oral docetaxel plus cyclosporin A in anthracycline pre-treated metastatic breast cancer. Curr Clin Pharmacol 2014; 9: 139-147.
64.
Johnson RW, Kreis H, Oberbauer R, Brattström C, Claesson K, Eris J. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 2001; 72: 777-786.
65.
Campistol JM, Eris J, Oberbauer R, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol 2006; 17: 581-589.
66.
Desai AA, Kindler HL, Taber D, et al. Modulation of irinotecan with cyclosporine: a phase II trial in advanced colorectal cancer. Cancer Chemother Pharmacol 2005; 56: 421-426.
67.
Krishnamurthy A, Dasari A, Noonan AM, et al. Phase Ib results of the rational combination of selumetinib and cyclosporin A in advanced solid tumors with an expansion cohort in metastatic colorectal cancer. Cancer Res 2018; 78: 5398-5407.
68.
Akhtar S. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics. Expert Opin Drug Metab Toxicol 2010; 6: 1347-1362.
69.
Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007; 59: 164-182.