eISSN: 1897-4317
ISSN: 1895-5770
Gastroenterology Review/Przegląd Gastroenterologiczny
Current issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Review paper

The role of fecal microbiota transplantation in selected neurodegenerative diseases and neurodevelopmental disorders

Anna Sopel
1
,
Wiktor Szczuciński
1
,
Tomasz Gosiewski
2
,
Dominika Salamon
3

  1. Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
  2. Microbiome Research Laboratory, Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
  3. Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
Gastroenterology Rev
Online publish date: 2024/12/22
Article file
- The role of fecal.pdf  [0.15 MB]
Get citation
 
PlumX metrics:
 
1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474: 1823-36.
2. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14: e1002533.
3. Sasso JM, Ammar RM, Tenchov R, et al. Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci 2023; 14: 1717-63.
4. Mueller NT, Bakacs E, Combellick J, et al. The infant microbiome development: Mom matters. Trends Mol Med 2015; 21: 109-17.
5. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-14.
6. Donati Zeppa S, Agostini D, Ferrini F, et al. Interventions on gut microbiota for healthy aging. Cells 2022; 12: 34.
7. Zeevi D, Korem T, Godneva A, et al. Structural variation in the gut microbiome associates with host health. Nature 2019; 568: 43-8.
8. Fontana A, Panebianco C, Picchianti-Diamanti A, et al. Gut microbiota profiles differ among individuals depending on their region of origin: an Italian pilot study. Int J Environ Res Public Health 2019; 16: 4065.
9. Gubert C, Kong G, Renoir T, et al. Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol Dis 2020; 134: 104621.
10. Ramirez J, Guarner F, Bustos Fernandez L, et al. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol 2020; 10: 572912.
11. Sandhu KV, Sherwin E, Schellekens H, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179: 223-44.
12. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99: 1877-2013.
13. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38: 1-12.
14. O’Mahony SM, Marchesi JR, Scully P, et al. early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65: 263-7.
15. Bailey MT, Dowd SE, Galley JD, et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 2011; 25: 397-407.
16. Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 2013; 167: 374-9.
17. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558: 263-75.
18. Generoso JS, Giridharan VV, Lee J, et al. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry 2021; 43: 293-305.
19. Jameson KG, Olson CA, Kazmi SA, et al. Toward understanding microbiome-neuronal signaling. Mol Cell 2020; 78: 577-83.
20. Stilling RM, van de Wouw M, Clarke G, et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016; 99: 110-32.
21. Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021; 13: 2099.
22. Zagórska A, Marcinkowska M, Jamrozik M, et al. From probiotics to psychobiotics – the gut-brain axis in psychiatric disorders. Benef Microbes 2020; 11: 717-32.
23. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291-5.
24. Eletto D, Mentucci F, Voli A, et al. Helicobacter pylori pathogen-associated molecular patterns: friends or foes? Int J Mol Sci 2022; 23: 3531.
25. Abdel‑Haq R, Schlachetzki JCM, Glass CK, et al. Microbiome–microglia connections via the gut–brain axis. J Exp Med 2019; 216: 41-59.
26. Rodrigues FTS, de Souza MRM, Lima CN de C, et al. Major depression model induced by repeated and intermittent lipopolysaccharide administration: long-lasting behavioral, neuroimmune and neuroprogressive alterations. J Psychiatr Res 2018; 107: 57-67.
27. Kubera M, Curzytek K, Duda W, et al. A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4months. Brain Behav Immun 2013; 31: 96-104.
28. Bakken JS, Borody T, Brandt LJ, et al. Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011; 9: 1044-9.
29. Minkoff NZ, Aslam S, Medina M, et al. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst Rev 2023; 4: CD013871.
30. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 2012; 9: 88-96.
31. Hamilton MJ, Weingarden AR, Unno T, et al. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013; 4: 125-35.
32. Li YT, Cai HF, Wang ZH, et al. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther 2016; 43: 445-57.
33. Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection a randomized trial. Ann Intern Med 2016; 165: 609-16.
34. Kumar R, Maynard CL, Eipers P, et al. Colonization potential to reconstitute a microbe community in patients detected early after fecal microbe transplant for recurrent C. difficile. BMC Microbiol 2016; 16: 5.
35. Jiang ZD, Ajami NJ, Petrosino JF, et al. Randomised clinical trial: faecal microbiota transplantation for recurrent Clostridum difficile infection – fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy. Aliment Pharmacol Ther 2017; 45: 899-908.
36. Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection a randomized clinical trial. JAMA 2016; 315: 142-9.
37. Jiang ZD, Jenq RR, Ajami NJ, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial. PLoS One 2018; 13: e0205064.
38. Gonzales-Luna AJ, Carlson TJ, Garey KW. Emerging options for the prevention and management of Clostridioides difficile infection. Drugs 2023; 83: 105-16.
39. Millan B, Park H, Hotte N, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis 2016; 62: 1479-86.
40. Green JE, Davis JA, Berk M, et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes 2020; 12: 1-25.
41. Kurokawa S, Kishimoto T, Mizuno S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: an open-label observational study. J Affect Disord 2018; 235: 506-12.
42. Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol 2019; 26: 27-40.
43. Levinthal DJ, Rahman A, Nusrat S, et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult Scler Int 2013; 2013: 319201.
44. Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 2015; 10: e0137429.
45. Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016; 6: 28484.
46. Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011; 108 (Suppl. 1): 4615-22.
47. Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA 2017; 114: 10713-8.
48. Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 2017; 114: 10719-24.
49. Salami M, Kouchaki E, Asemi Z, et al. How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. J Funct Foods 2019; 52: 8-13.
50. Rahimlou M, Hosseini SA, Majdinasab N, et al. Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 2022; 25: 411-22.
51. Makkawi S, Camara-Lemarroy C, Metz L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm 2018; 5: e459.
52. Garcia-Rodriguez V, Ali S, Dupont A, et al. Fecal microbiota transplantation associated with disease stabilization in a patient with multiple sclerosis. Am J Gastroenterol 2020; 115: S1224.
53. Borody T, Campbell J, Torres M, et al. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol 2011; 106: S352.
54. Engen PA, Zaferiou A, Rasmussen H, et al. Single-arm, non-randomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol 2020; 11: 978.
55. Al KF, Craven LJ, Gibbons S, et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J Exp Transl Clin 2022; 8: 20552173221086662.
56. Serrano-Pozo A, Frosch MP, Masliah E, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1: a006189.
57. Minter MR, Zhang C, Leone V, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 2016; 6 : 30028.
58. Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802.
59. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
60. Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7: 13537.
61. Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimer’s Dis 2018; 63: 1337-46.
62. Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013; 493: 674-8.
63. Zhang L, Wang Y, Xiayu X, et al. Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis 2017; 60: 1241-57.
64. Wu L, Han Y, Zheng Z, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and alzheimer’s disease: signals in host–microbe interplay. Nutrients 2021; 13: 228.
65. Azm SAN, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in -amyloid (1–42) injected rats. Appl Physiol Nutr Metabol 2018; 43: 718-26.
66. Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7: 2426.
67. Kobayashi Y, Sugahara H, Shimada K, et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 2017; 7: 13510.
68. Akbari E, Asemi Z, Kakhaki RD, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256.
69. Tamtaji OR, Heidari-soureshjani R, Mirhosseini N, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin Nutr 2019; 38: 2569-75.
70. Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9: 189.
71. Kim M, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 2020; 69: 283-94.
72. Elangovan S, Borody TJ, Holsinger RMD. Fecal microbiota transplantation reduces pathology and improves cognition in a mouse model of Alzheimer’s disease. Cells 2023; 12: 119.
73. Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res 2020; 48: 300060520925930.
74. Park SH, Lee JH, Shin J, et al. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report. Curr Med Res Opin 2021; 37: 1739-44.
75. Chen X, Zhang W, Lin Z, et al. Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments. Front Cell Infect Microbiol 2023; 13: 1103189.
76. DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. PT 2015; 40: 504-32.
77. Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 2011; 6: e28032.
78. Sun BH, Wang T, Li NY, et al. Clinical features and relative factors of constipation in a cohort of Chinese patients with Parkinson’s disease. World J Gastrointest Pharmacol Ther 2021; 12: 21-31.
79. Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic -synuclein from the gut to the brain models Parkinson’s disease. Neuron 2019; 103: 627-41.e7.
80. Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30: 350-8.
81. Petrov VA, Saltykova IV, Zhukova IA, et al. Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 2017; 162: 734-7.
82. Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 2017; 32: 739-49.
83. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167: 1469-80.e12.
84. Sun MF, Zhu YL, Zhou ZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 2018; 70: 48-60.
85. Zhao Z, Ning J, Bao X, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 2021; 9: 226.
86. Hou YF, Shan C, Zhuang SY, et al. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome 2021; 9: 34.
87. Segal A, Zlotnik Y, Moyal-Atias K, et al. Fecal microbiota transplant as a potential treatment for Parkinson’s disease – a case series. Clin Neurol Neurosurg 2021; 207: 106791.
88. Huang H, Xu H, Luo Q, et al. Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report. Medicine (United States) 2019; 98: e16163.
89. Xue LJ, Yang XZ, Tong Q, et al. Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study. Medicine 2020; 99: e22035.
90. Kuai XY, Yao XH, Xu LJ, et al. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb Cell Fact 2021; 20: 98.
91. DuPont H, Suescun J, Jiang Z, et al. Fecal microbiota transplantation in Parkinson’s disease – a randomized repeat-dose, placebo-controlled clinical pilot study. Front Neurol 2023; 14: 1104759.
92. Bruggeman A, Vandendriessche C, Hamerlinck H, et al. Safety and efficacy of faecal microbiota transplantation in patients with mild to moderate Parkinson’s disease (GUT-PARFECT): a double-blind, placebo-controlled, randomised, phase 2 trial. EClinicalMedicine 2024; 71: 102563.
93. Cheng Y, Tan G, Zhu Q, et al. Efficacy of fecal microbiota transplantation in patients with parkinson’s disease: clinical trial results from a randomized, placebo-controlled design. Gut Microbes 2023; 15: 2284247.
94. Scheperjans F, Levo R, Bosch B, et al. Fecal microbiota transplantation for treatment of Parkinson disease. JAMA Neurol 2024; 81: 925-38.
95. Coury DL, Ashwood P, Fasano A, et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 2012; 130 (Suppl. 2): S160-8.
96. Marler S, Ferguson BJ, Lee EB, et al. Association of rigid-compulsive behavior with functional constipation in autism spectrum disorder. J Autism Dev Disord 2017; 47: 1673-81.
97. Gondalia SV, Palombo EA, Knowles SR, et al. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res 2012; 5: 419-27.
98. Son JS, Zheng LJ, Rowehl LM, et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS One 2015; 10: e0137725.
99. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16: 444-53.
100. Kang DW, Park JG, Ilhan ZE, et al. reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013; 8: e68322.
101. Adams JB, Johansen LJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterol 2011; 11: 22.
102. Williams BL, Hornig M, Parekh T, et al. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 2012; 3: e00261-11.
103. Wang L, Christophersen CT, Sorich MJ, et al. Increased abundance of Sutterella Spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 20136; 4: 42.
104. Parracho HMRT, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005; 54: 987-91.
105. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004; 70: 6459-65.
106. Alshammari MK, AlKhulaifi MM, Al Farraj DA, et al. Incidence of Clostridium perfringens and its toxin genes in the gut of children with autism spectrum disorder. Anaerobe 2020; 61: 102114.
107. Ho LKH, Tong VJW, Syn N, et al. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog 2020; 12; 6.
108. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155: 1451-63.
109. Qi Z, Lyu M, Yang L, et al. A novel and reliable rat model of autism. Front Psychiatry 2021; 1: 549810.
110. Sharon G, Cruz NJ, Kang DW, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019; 177: 1600-18.e17.
111. Xiao L, Yan J, Yang T, et al. Fecal microbiome transplantation from children with autism spectrum disorder modulates tryptophan and serotonergic synapse metabolism and induces altered behaviors in germ-free mice. mSystems 2021; 6: e01343-20.
112. Golubeva AV, Joyce SA, Moloney G, et al. Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 2017; 24: 166-78.
113. Goo N, Bae HJ, Park K, et al. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sci 2020; 262 : 118497.
114. Chen K, Fu Y, Wang Y, et al. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder. Microb Ecol 2020; 80: 475-86.
115. Hazan S, Haroon J, Jordan S, et al. Improvements in gut microbiome composition and clinical symptoms following familial fecal microbiota transplantation in a nineteen-year-old adolescent with severe autism. J Med Cases 2024; 15: 82-91.
116. Hu C, He T, Zou B, et al. Fecal microbiota transplantation in a child with severe ASD comorbidities of gastrointestinal dysfunctions – a case report. Front Psychiatry 2023; 14: 1219104.
117. Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017; 5: 10.
118. Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep 2019; 9 : 5821.
119. Li Y, Xiao P, Cao R, et al. Effects and microbiota changes following oral lyophilized fecal microbiota transplantation in children with autism spectrum disorder. Front Pediatr 2024; 12: 1369823.
120. Zhao H, Gao X, Xi L, et al. Fecal microbiota transplantation for children with autism spectrum disorder. Gastrointest Endosc 2019; 89 : AB512-3.
121. Li N, Chen H, Cheng Y, et al. Fecal microbiota transplantation relieves gastrointestinal and autism symptoms by improving the gut microbiota in an open-label study. Front Cell Infect Microbiol 2021; 11: 759435.
122. Tandon R, Gaebel W, Barch DM, et al. Definition and description of schizophrenia in the DSM-5. Schizophr Res 2013; 150: 3-10.
123. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 2019; 42: 205-20.
124. Yuan X, Kang Y, Zhuo C, et al. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 2019; 512: 373-80.
125. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010; 167: 261-80.
126. Schwarz E, Maukonen J, Hyytiäinen T, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 2018; 192: 398-403.
127. Zheng P, Zeng B, Liu M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 2019; 5: eaau8317.
128. Yan F, Xia L, Xu L, et al. A comparative study to determine the association of gut microbiome with schizophrenia in Zhejiang, China. BMC Psychiatry 2022; 22: 731.
129. Shen Y, Xu J, Li Z, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res 2018; 197: 470-7.
130. Nguyen TT, Kosciolek T, Maldonado Y, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res 2019; 204: 23-9.
131. Zhu F, Guo R, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry 2020; 25: 2905-18.
132. Liang W, Huang Y, Tan X, et al. Alterations of glycerophospholipid and fatty acyl metabolism in multiple brain regions of schizophrenia microbiota recipient mice. Neuropsychiatr Dis Treat 2019; 15: 3219-29.
133. Zhu F, Ju Y, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun 2020; 11: 1612.
134. Okubo R, Koga M, Katsumata N, et al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: a proof-of-concept study. J Affect Disord 2019; 245: 377-85.
135. Yamamura R, Okubo R, Katsumata N, et al. Lipid and energy metabolism of the gut microbiota is associated with the response to probiotic bifidobacterium breve strain for anxiety and depressive symptoms in schizophrenia. J Pers Med 2021; 11; 987.
136. Tomasik J, Yolken RH, Bahn S, et al. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomark Insights 2015; 10: 47-54.
Copyright: © 2024 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.