Bieżący numer
Archiwum
Artykuły zaakceptowane
O czasopiśmie
Zeszyty specjalne
Rada naukowa
Recenzenci
Bazy indeksacyjne
Prenumerata
Kontakt
Zasady publikacji prac
Opłaty publikacyjne
Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
|
2/2022
vol. 18 Artykuł przeglądowy
Zastosowanie systemu DIAGNOcam w diagnostyce próchnicy u pacjentów leczonych ortodontycznie
Aleksandra Maria Wawrzeńczyk
1
,
Agnieszka Maria Kwaśniewska
1
,
Izabela Strużycka
1
,
Katarzyna Brus-Sawczuk
1
,
Agata Czajka-Jakubowska
2
Forum Ortod 2022; 18 (2): 89-100
Data publikacji online: 2022/08/10
Pliki artykułu:
- Aleksandra Maria Wawrzeńczyk.pdf
[3.50 MB]
- Aleksandra Maria Wawrzeńczyk.pdf
[3.50 MB]
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
1. Twetman S, Axelsson S, Dahlen G, Espelid I, Mejare I, Norlund A. Adjunct methods for caries detection: a systematic review of literature. Acta Odontol Scand 2013; 71: 388-97. 2.
Kidd EA, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res 2004; 83: 35-8. 3.
Chapman JA, Roberts WE, Eckert GJ, Kula KS, González-Cabezas C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 2010; 138: 188-94. 4.
Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982; 81: 93-8. 5.
Animireddy D, Reddy Bekkem VT, Vallala P, Kotha SB, Ankireddy S, Mohammad N. Evaluation of pH, buffering capacity, viscosity and flow rate levels of saliva in caries-free, minimal caries and nursing caries children: An in vivo study. Contemp Clin Dent 2014; 5: 324-8. 6.
Heymann GC, Grauer D. A contemporary review of white spot lesions in orthodontics. J Esthet Restor Dent 2013; 25: 85-95. 7.
Artun J, Brobakken BO. Prevalence of carious white spots after orthodontic treatment with multibonded appliances. Eur J Orthod 1986; 8: 229-34. 8.
Lovrov S, Hertrich K, Hirschfelder U. Enamel Demineralization during Fixed Orthodontic Treatment - Incidence and Correlation to Various Oral-hygiene Parameters. J Orofac Orthop 2007; 68: 353-63. 9.
Enaia M, Bock N, Ruf S. White-spot lesions during multibracket appliance treatment: A challenge for clinical excellence. Am J Orthod Dentofacial Orthop 2011; 140: 17-24. 10.
Richter AE, Arruda AO, Peters MC, Sohn W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop 2011; 139: 657-64. 11.
Tufekci E, Dixon JS, Gunsolley JC, Lindauer SJ. Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod 2011; 81: 206-10. 12.
Ogaard B, Rølla G, Arends J, ten Cate JM. Orthodontic appliances and enamel demineralization. Part 2. Prevention and treatment of lesions. Am J Orthod Dentofacial Orthop 1988; 94: 123-8. 13.
Abogazalah N, Eckert GJ, Ando M. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries. J Dent 2017; 63: 44-50. 14.
Fried D, Featherstone JD, Darling CL, Jones RS, Ngaotheppitak P, Buhler CM. Early caries imaging and monitoring with near-infrared light. Dent Clin North Am 2005; 49: 771-93. 15.
Jones R, Huynh G, Jones G, Fried D. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt Express 2003; 11: 2259-65. 16.
Fried D, Staninec M, Darling CL, Lee C, Kang H, Chan KH. In vivo Near-IR Imaging of Occlusal Lesions at 1310-nm. Proc SPIE Int Soc Opt Eng 2011; 7884: 78840B1. 17.
Chung S, Fried D, Staninec M, Darling CL. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm. Proc SPIE Int Soc Opt Eng 2011; 7884: 78840X. 18.
Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1,310 nm. Lasers Surg Med 2010; 42: 292-8. 19.
Simon JC, Lucas SA, Staninec M, Tom H, Chan KH, Darling CL. Near-IR transillumination and reflectance imaging at 1,300 nm and 1,500-1,700 nm for in vivo caries detection. Lasers Surg Med 2016; 48: 828-36. 20.
Fried D, Glena RE, Featherstone JDB, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infraredwavelengths. Appl Opt 1995; 34: 1278-85. 21.
Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med 2009; 41: 208-13. 22.
Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J Biomed Optics 2006; 11: 34023. 23.
Fried D, Staninec M, Darling CL. Near-infrared imaging of dental decay at 1310 nm. J Laser Dent 2010; 18: 8-16. 24.
Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int 2014; 45: 531-8. 25.
Abdelaziz M, Krejci I. DIAGNOcam-a Near Infrared Digital Imaging Transillumination (NIDIT) technology. Int J Esthet Dent 2015; 10: 158-65. 26.
Abdelaziz M, Krejci I, Perneger T, Feilzer A, Vazquez L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study. J Dent 2018; 70: 40-5. 27.
Kuhnisch J, Sochtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig 2016; 20: 821-9. 28.
Ozkan G, Guzel KGU. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection. Lasers Med Sci 2017; 32: 1417-22. 29.
Berg SC, Stahl JM, Lien W, Slack CM, Vandewalle KS. A clinical study comparing digital radiography and near-infrared transillumination in caries detection. J Esthet Restor Dent 2018; 30: 39-44. 30.
Melo M, Pascual A, Camps I, Ata-Ali F, Ata-Ali J. Combined Near-Infrarred Light Transillumination and Direct Digital Radiography Increases Diagnostic In Approximal Caries. Sci Rep 2019; 9: 14224. 31.
Baltacioglu IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC Oral Health 2017; 17: 130. 32.
Maia AM, Karlsson L, Margulis W, Gomes AS. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries. Dentomaxillofac Radiol 2011; 40: 429-33. 33.
Abogazalah N, Eckert GJ, Ando M. In vitro visual and visible light transillumination methods for detection of natural non-cavitated approximal caries. Clin Oral Investig 2019; 23: 1287-94. 34.
Lederer A, Kunzelmann KH, Heck K, Hickel R, Litzenburger F. In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces. Clin Oral Investig 2019; 23: 3933-40. 35.
Litzenburger F, Heck K, Pitchika V, Neuhaus KW, Jost FN, Hickel R. Inter- and intraexaminer reliability of bitewing radiography and near-infrared light transillumination for proximal caries detection and assessment. Dentomaxillofac Radiol 2018; 47: 20170292. 36.
Lederer A, Kunzelmann KH, Hickel R, Litzenburger F. Transillumination and HDR Imaging for Proximal Caries Detection. J Dent Res 2018; 97: 844-9. 37.
Rusotto F, Tirone F, Salzano S, Borga FC, Paolino DS, Ferraro A, Botasso S. Clinical evaluation of near-infrared light transillumination (NIRT) as an interproximal caries detection tool in a large sample of patients in a private practice. J Radiol Imaging Technol 2016; 1: 1-5. 38.
Elhennawy K, Askar H, Jost-Brinkmann PG, Reda S, Al-Abdi A, Paris S, et al. In vitro performance of the DIAGNOcam for detecting proximal carious lesions adjacent to composite restorations. J Dent 2018; 72: 39-43. 39.
Bussaneli DG, Restrepo M, Boldieri T, Pretel H, Mancini MW, Santos-Pinto L, Cassia Loiola Cordeiro R. Assessment of a new infrared laser transillumination technology (808 nm) for the detection of occlusal caries-an in vitro study. Lasers Med Sci 2015; 30: 1873-9. 40.
Schaefer G, Pitchika V, Litzenburger F, Hickel R, Kuhnisch J. Evaluation of occlusal caries detection and assessment by visual inspection, digital bitewing radiography and near-infrared light transillumination. Clin Oral Investig 2018; 22: 2431-8. 41.
Tassoker M, Sener S, Karabekiroglu S. Occlusal Caries Detection and Diagnosis Using Visual ICDAS Criteria, Laser Fluorescence Measurements and Near-Infrared Light Transillumination Images. Med Princ Pract 2020; 29: 25-31. 42.
Melo M, Pascual A, Camps I, Ata-Ali F, Ata-Ali J. Combined Near-Infrarred Light Transillumination and Direct Digital Radiography Increases Diagnostic In Approximal Caries. Sci Rep 2019; 9: 14224. 43.
Abogazalah N, Ando M. Alternative methods to visual and radiographic examinations for approximal caries detection. J Oral Sci 2017; 59: 315-22. 44.
Marmaneu-Menero A, Iranzo-Cortes JE, Almerich-Torres T, Ortola-Siscar JC, Montiel-Company JM, Almerich-Silla JM. Diagnostic Validity of Digital Imaging Fiber-Optic Transillumination (DIFOTI) and Near-Infrared Light Transillumination (NILT) for Caries in Dentine. J Clin Med 2020; 9. 45.
Astvaldsdottir A, Ahlund K, Holbrook WP, de Verdier B, Tranaeus S. Approximal Caries Detection by DIFOTI: In Vitro Comparison of Diagnostic Accuracy/Efficacy with Film and Digital Radiography. Int J Dent 2012; 2012: 326401. 46.
Chawla N, Messer LB, Adams GG, Manton DJ. An in vitro comparison of detection methods for approximal carious lesions in primary molars. Caries Res 2012; 46: 161-9.
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
|