1. Chen CP, Weinberg V, Shinohara K et al. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int J Radiat Oncol Biol Phys 2013; 86: 324-329.
2.
Tselis N, Hoskin P, Baltas D et al. High dose rate brachytherapy as monotherapy for localised prostate cancer: Review of the current status. Clin Oncol (R Coll Radiol) 2017; 29: 401-411.
3.
Viani GA, Arruda CV, Assis Pellizzon AC et al. HDR brachytherapy as monotherapy for prostate cancer: A systematic review with meta-analysis. Brachytherapy 2021; 20: 307-314.
4.
Yaxley JW, Lah K, Yaxley JP et al. Long-term outcomes of high-dose-rate brachytherapy for intermediate- and high-risk prostate cancer with a median follow-up of 10 years. BJU Int 2017; 120: 56-60.
5.
Zaorsky NG, Doyle LA, Yamoah K et al. High dose rate brachytherapy boost for prostate cancer: a systematic review. Cancer Treat Rev 2014; 40: 414-425.
6.
Scardino PT, Frankel JM, Wheeler TM et al. The prognostic significance of post-irradiation biopsy results in patients with prostatic cancer. J Urol 1986; 135: 510-516.
7.
Whitmore WF, Jr., Hilaris B, Batata M et al. Interstitial radiation: short-term palliation or curative therapy? Urology 1985; 25: 24-29.
8.
Fuks Z, Leibel SA, Wallner KE et al. The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 1991; 21: 537-547.
9.
Aronowitz JN. Introduction of transperineal image-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys 2014; 89: 907-915.
10.
Prostate brachytherapy. Mayo Clinic. https://www.mayoclinic.org/tests-procedures/prostate-brachytherapy/about/pac-20384949 (accessed January 14, 2025).
11.
Holm HH, Juul N, Pedersen JF et al. Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 1983; 130: 283-286.
12.
Yamada Y, Rogers L, Demanes DJ et al. American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy. Brachytherapy 2012; 11: 20-32.
13.
Blake CC, Elliot TL, Slomka PJ et al. Variability and accuracy of measurements of prostate brachytherapy seed position in vitro using three-dimensional ultrasound: an intra- and inter-observer study. Med Phys 2000; 27: 2788-2795.
14.
Buzurovic I, Misic V, Yu Y. Needle identification in high-dose-rate prostate brachytherapy using ultrasound imaging modality. Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 476-479.
15.
Chen S, Gonenc B, Meng L et al. Needle release mechanism enabling multiple insertions with an ultrasound-guided prostate brachytherapy robot. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 4339-4342.
16.
Brost EE, Stish BJ, Lee CU et al. Improving ultrasound-based brachytherapy needle conspicuity by applying an echogenic coating. Med Phys 2023; 50: 1418-1427.
17.
Siebert FA, Hirt M, Niehoff P et al. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers. Med Phys 2009; 36: 3406-3412.
18.
Androulakis I, Schiphof-Godart J, van Heerden LE et al. Assessment of integrated electromagnetic tracking for dwell position monitoring in a clinical HDR brachytherapy setting for prostate cancer. Radiother Oncol 2024; 200: 110501.
19.
Ishiyama H, Kitano M, Satoh T et al. Genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with Hypofractionated External beam radiotherapy for localized prostate cancer: an analysis to determine the correlation between dose-volume histogram parameters in HDR brachytherapy and severity of toxicity. Int J Radiat Oncol Biol Phys 2009; 75: 23-28.
20.
Potters L, Morgenstern C, Calugaru E et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol 2008; 179: S20-24.
21.
Breyer B, Cikes I. Ultrasonically marked catheter – a method for positive echographic catheter position identification. Med Biol Eng Comput 1984; 22: 268-271.
22.
Vilkomerson D, Lyons D. A system for ultrasonic beacon-guidance of catheters and other minimally-invasive medical devices. IEEE Trans Ultrason Ferroelectr Freq Control 1997; 44: 496-504.
23.
Frazin LJ, Vonesh MJ, Yaacoub AS et al. Doppler catheter tip localization using color enhancement. Cathet Cardiovasc Diagn 1994; 32: 62-69.
24.
Armstrong G, Cardon L, Vilkomerson D et al. Localization of needle tip with color Doppler during pericardiocentesis: In vitro validation and initial clinical application. J Am Soc Echocardiogr 2001; 14: 29-37.
25.
Fronheiser MP, Idriss SF, Wolf PD et al. Vibrating interventional device detection using real-time 3-D color Doppler. IEEE Trans Ultrason Ferroelectr Freq Control 2008; 55: 1355-1362.
26.
Guo X, Tavakoli B, Kang HJ et al. Photoacoustic active ultrasound element for catheter tracking. Proc SPIE 2014; 8943: 859-865.
27.
Mung J, Han S, Weaver F et al. Time of flight and FMCW catheter localization. IEEE International Ultrasonics Symposium, Rome, Italy 2009: 590-593.
28.
Mung J, Han S, Yen JT. Design and in vitro evaluation of a real-time catheter localization system using time of flight measurements from seven 3.5 MHz single element ultrasound transducers towards abdominal aortic aneurysm procedures. Ultrasonics 2011; 51: 768-775.
29.
Kasine T, Romundstad L, Rosseland LA et al. Needle tip tracking for ultrasound-guided peripheral nerve block procedures-An observer blinded, randomised, controlled, crossover study on a phantom model. Acta Anaesthesiol Scand 2019; 63: 1055-1062.
30.
Kasine T, Romundstad L, Rosseland LA et al. The effect of needle tip tracking on procedural time of ultrasound-guided lumbar plexus block: a randomised controlled trial. Anaesthesia 2020; 75: 72-79.
31.
McLeod GA. Novel approaches to needle tracking and visualisation. Anaesthesia 2021; 76 Suppl 1: 160-170.
32.
Ramadani A, Bui M, Wendler T et al. A survey of catheter tracking concepts and methodologies. Med Image Anal 2022; 82: 102584.
33.
Sauer BC, Dürrbeck C, Bert C. Electromagnetic tracking in interstitial brachytherapy: A systematic review. Front Phys 2022; 10: 448-453.
34.
Sorriento A, Porfido MB, Mazzoleni S et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng 2020; 13: 212-232.
35.
The Engineering ToolBox. https://www.engineeringtoolbox.com/sound-speed-water-d_598.html (accessed January 14, 2025).
36.
McMahon EM, Jiamsripong P, Katayama M et al. Accurate guidance of a catheter by ultrasound imaging and identification of a catheter tip by pulsed-wave Doppler. Pacing Clin Electrophysiol 2012; 35: 44-50.
37.
Belohlavek M, Katayama M, Zarbatany D et al. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts. Ultrasound Med Biol 2014; 40: 1650-1659.
38.
Katayama M, Zarbatany D, Cha SS et al. Acoustically active catheter for intracardiac navigation by color doppler ultrasonography. Ultrasound Med Biol 2017; 43: 1888-1896.
39.
Belohlavek M, Katayama M, Vaitkus VV et al. A real-time color doppler marker for echocardiographic guidance of an acoustically active extracorporeal membrane oxygenation cannula. J Ultrasound Med 2019; 38: 1875-1885.
40.
Katayama M, Gades NM, Singh VP et al. Doppler-guided acoustically active injection catheter: transendocardial delivery assessed by an efficacy testing animal model. J Ultrasound Med 2022; 41: 749-762.
41.
Katayama M, Yang EH, Belohlavek M. A pilot study on novel use of color doppler imaging for navigation of wiring in coronary interventions. Ultrasound Med Biol 2024; 50: 970-973.