Ta strona używa pliki cookies, w celu polepszenia użyteczności i funkcjonalności oraz w celach statystycznych. Dowiedz się więcej w Polityce prywatności.
Korzystając ze strony wyrażasz zgodę na używanie plików cookies, zgodnie z aktualnymi ustawieniami przeglądarki.
Akceptuję wykorzystanie plików cookies
eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank

Share:
Share:
Original paper

Active ultrasound tracking method for prostate brachytherapy using acoustic needle prototype and sonomicrometry

Marek Belohlavek
1
,
Minako Katayama
1
,
Christopher L. Deufel
2

  1. Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Scottsdale, AZ, USA
  2. Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
J Contemp Brachytherapy 2025
Online publish date: 2025/02/27
Article file
- Active ultrasound.pdf  [0.78 MB]
Get citation
 
 
1. Chen CP, Weinberg V, Shinohara K et al. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int J Radiat Oncol Biol Phys 2013; 86: 324-329.
2. Tselis N, Hoskin P, Baltas D et al. High dose rate brachytherapy as monotherapy for localised prostate cancer: Review of the current status. Clin Oncol (R Coll Radiol) 2017; 29: 401-411.
3. Viani GA, Arruda CV, Assis Pellizzon AC et al. HDR brachytherapy as monotherapy for prostate cancer: A systematic review with meta-analysis. Brachytherapy 2021; 20: 307-314.
4. Yaxley JW, Lah K, Yaxley JP et al. Long-term outcomes of high-dose-rate brachytherapy for intermediate- and high-risk prostate cancer with a median follow-up of 10 years. BJU Int 2017; 120: 56-60.
5. Zaorsky NG, Doyle LA, Yamoah K et al. High dose rate brachytherapy boost for prostate cancer: a systematic review. Cancer Treat Rev 2014; 40: 414-425.
6. Scardino PT, Frankel JM, Wheeler TM et al. The prognostic significance of post-irradiation biopsy results in patients with prostatic cancer. J Urol 1986; 135: 510-516.
7. Whitmore WF, Jr., Hilaris B, Batata M et al. Interstitial radiation: short-term palliation or curative therapy? Urology 1985; 25: 24-29.
8. Fuks Z, Leibel SA, Wallner KE et al. The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 1991; 21: 537-547.
9. Aronowitz JN. Introduction of transperineal image-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys 2014; 89: 907-915.
10. Prostate brachytherapy. Mayo Clinic. https://www.mayoclinic.org/tests-procedures/prostate-brachytherapy/about/pac-20384949 (accessed January 14, 2025).
11. Holm HH, Juul N, Pedersen JF et al. Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 1983; 130: 283-286.
12. Yamada Y, Rogers L, Demanes DJ et al. American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy. Brachytherapy 2012; 11: 20-32.
13. Blake CC, Elliot TL, Slomka PJ et al. Variability and accuracy of measurements of prostate brachytherapy seed position in vitro using three-dimensional ultrasound: an intra- and inter-observer study. Med Phys 2000; 27: 2788-2795.
14. Buzurovic I, Misic V, Yu Y. Needle identification in high-dose-rate prostate brachytherapy using ultrasound imaging modality. Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 476-479.
15. Chen S, Gonenc B, Meng L et al. Needle release mechanism enabling multiple insertions with an ultrasound-guided prostate brachytherapy robot. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 4339-4342.
16. Brost EE, Stish BJ, Lee CU et al. Improving ultrasound-based brachytherapy needle conspicuity by applying an echogenic coating. Med Phys 2023; 50: 1418-1427.
17. Siebert FA, Hirt M, Niehoff P et al. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers. Med Phys 2009; 36: 3406-3412.
18. Androulakis I, Schiphof-Godart J, van Heerden LE et al. Assessment of integrated electromagnetic tracking for dwell position monitoring in a clinical HDR brachytherapy setting for prostate cancer. Radiother Oncol 2024; 200: 110501.
19. Ishiyama H, Kitano M, Satoh T et al. Genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with Hypofractionated External beam radiotherapy for localized prostate cancer: an analysis to determine the correlation between dose-volume histogram parameters in HDR brachytherapy and severity of toxicity. Int J Radiat Oncol Biol Phys 2009; 75: 23-28.
20. Potters L, Morgenstern C, Calugaru E et al. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol 2008; 179: S20-24.
21. Breyer B, Cikes I. Ultrasonically marked catheter – a method for positive echographic catheter position identification. Med Biol Eng Comput 1984; 22: 268-271.
22. Vilkomerson D, Lyons D. A system for ultrasonic beacon-guidance of catheters and other minimally-invasive medical devices. IEEE Trans Ultrason Ferroelectr Freq Control 1997; 44: 496-504.
23. Frazin LJ, Vonesh MJ, Yaacoub AS et al. Doppler catheter tip localization using color enhancement. Cathet Cardiovasc Diagn 1994; 32: 62-69.
24. Armstrong G, Cardon L, Vilkomerson D et al. Localization of needle tip with color Doppler during pericardiocentesis: In vitro validation and initial clinical application. J Am Soc Echocardiogr 2001; 14: 29-37.
25. Fronheiser MP, Idriss SF, Wolf PD et al. Vibrating interventional device detection using real-time 3-D color Doppler. IEEE Trans Ultrason Ferroelectr Freq Control 2008; 55: 1355-1362.
26. Guo X, Tavakoli B, Kang HJ et al. Photoacoustic active ultrasound element for catheter tracking. Proc SPIE 2014; 8943: 859-865.
27. Mung J, Han S, Weaver F et al. Time of flight and FMCW catheter localization. IEEE International Ultrasonics Symposium, Rome, Italy 2009: 590-593.
28. Mung J, Han S, Yen JT. Design and in vitro evaluation of a real-time catheter localization system using time of flight measurements from seven 3.5 MHz single element ultrasound transducers towards abdominal aortic aneurysm procedures. Ultrasonics 2011; 51: 768-775.
29. Kasine T, Romundstad L, Rosseland LA et al. Needle tip tracking for ultrasound-guided peripheral nerve block procedures-An observer blinded, randomised, controlled, crossover study on a phantom model. Acta Anaesthesiol Scand 2019; 63: 1055-1062.
30. Kasine T, Romundstad L, Rosseland LA et al. The effect of needle tip tracking on procedural time of ultrasound-guided lumbar plexus block: a randomised controlled trial. Anaesthesia 2020; 75: 72-79.
31. McLeod GA. Novel approaches to needle tracking and visualisation. Anaesthesia 2021; 76 Suppl 1: 160-170.
32. Ramadani A, Bui M, Wendler T et al. A survey of catheter tracking concepts and methodologies. Med Image Anal 2022; 82: 102584.
33. Sauer BC, Dürrbeck C, Bert C. Electromagnetic tracking in interstitial brachytherapy: A systematic review. Front Phys 2022; 10: 448-453.
34. Sorriento A, Porfido MB, Mazzoleni S et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev Biomed Eng 2020; 13: 212-232.
35. The Engineering ToolBox. https://www.engineeringtoolbox.com/sound-speed-water-d_598.html (accessed January 14, 2025).
36. McMahon EM, Jiamsripong P, Katayama M et al. Accurate guidance of a catheter by ultrasound imaging and identification of a catheter tip by pulsed-wave Doppler. Pacing Clin Electrophysiol 2012; 35: 44-50.
37. Belohlavek M, Katayama M, Zarbatany D et al. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts. Ultrasound Med Biol 2014; 40: 1650-1659.
38. Katayama M, Zarbatany D, Cha SS et al. Acoustically active catheter for intracardiac navigation by color doppler ultrasonography. Ultrasound Med Biol 2017; 43: 1888-1896.
39. Belohlavek M, Katayama M, Vaitkus VV et al. A real-time color doppler marker for echocardiographic guidance of an acoustically active extracorporeal membrane oxygenation cannula. J Ultrasound Med 2019; 38: 1875-1885.
40. Katayama M, Gades NM, Singh VP et al. Doppler-guided acoustically active injection catheter: transendocardial delivery assessed by an efficacy testing animal model. J Ultrasound Med 2022; 41: 749-762.
41. Katayama M, Yang EH, Belohlavek M. A pilot study on novel use of color doppler imaging for navigation of wiring in coronary interventions. Ultrasound Med Biol 2024; 50: 970-973.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.