Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Acute effects of motor learning models on technical efficiency in strength-coordination exercises: a comparative analysis of Olympic snatch biomechanics in beginners

Achraf Ammar
1, 2, 3
,
Atef Salem
1, 3
,
Marvin Leonard Simak
1
,
Fabian Horst
1
,
Wolfgang I. Schöllhorn
1

  1. Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
  2. Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax,University of Sfax, Sfax 3029, Tunisia
  3. High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
Biol Sport. 2025;42(1):151–161
Online publish date: 2024/07/31
Article file
- 16_04265_Article_c.pdf  [0.61 MB]
Get citation
 
PlumX metrics:
 
1. Marrou HI, Harder R, Beumann C. Geschichte der Erziehung im klassischen Altertum. Freiburg; München: Alber; 1977.
2. Schöllhorn WI, Rizzi N, Slapšinskaitė-Dackevičienė A, Leite N. Always pay attention to which model of motor learning you are using. Int J Environ Res Public Health. 2022; 19(2):7–11.
3. Miller G, Galanter E, Pribram K. Plans and the structure of behavior. New York, NY: Holt, Rhinehart, & Winston; 1960.
4. Wiener N. Cybernetics or control and communication in the animal and the machine. Cambridge, MA: The Technology Press; 1948.
5. Guts Muths JCF. Spiele zur Übung und Erholung des Körpers und Geistes für Jugend, ihre Erzieher und alle Freunde unschuldiger Jugendfreuden. Buchhandlung der Erziehungsanstalt. Schnepfenthal; 1796.
6. Fröbel F. Die Menschenerziehung. Leipzig: Verlag der allgemeinen deutschen Erziehungsanstalt; 1826/2001. /The Education of Man. Amer Traditional Toys; 2001.
7. Adams JA. Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychol Bull. 1987; 101:41–74. doi: 10.1037/0033-2909.101.1.41.
8. Schmidt RA. A schema theory of discrete motor skill learning. Psychol Rev. 1975; 82:225–260.
9. Battig WF. The flexibility of human memory. In: Cermak LS, Craik FI, editors. Levels of processing in human memory. Hillsdale, NJ: Erlbaum; 1979. p. 23–44.
10. Shea JB, Morgan RL. Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J Exp Psychol Hum Learn Mem. 1979; 5:179–187. doi: 10.1037/0278-7393 .5.2.179.
11. Kerr R, Booth B. Specific and varied practice of motor skill. Percept Mot Skills. 1978; 46:395–401. doi: 10.1177/003 151257804600201.
12. Harre D, et al. Trainingslehre. 5th ed. Berlin: Sportverlag; 1975.
13. Matveev LP. Die Periodisierung des Sportlichen Trainings. Fiskultura i Sport. Moskau. Deutsche Übersetzung; Staatliches Komiteefür Körperkultur und Sport: Berlin, Germany; 1966.
14. Schöllhorn WI, Paschke M, Beckmann H. Differenzielles training im volleyball beim erlernen von zwei techniken. In: Langolf K, Roth R, editors. Volleyball 2005—Beach World Championships. Hamburg: Czwalina; 2006. p. 97–105.
15. Tutu H. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function. Phys Rev E Stat Nonlin Soft Matter Phys. 2011; 83(6 Pt 1):061106. doi: 10 .1103/ PhysRevE.83.061106. PMID: 21797301.
16. Krauss P, Metzner C, Schilling A, Schütz C, Tziridis K, Fabry B, Schulze H. Adaptive stochastic resonance for unknown and variable input signals. Sci Rep. 2017; 7(1):2450. doi: 10.1038 /s41598-017-02644-w. PMID: 28550314; PMCID: PMC5446399.
17. Schöllhorn WI. Practical consequences of biomechanically determined individuality and fluctuations on motor learning. In: Herzog W, Azim J, editors. XVIIth Conference-Proceeding of the International Society of Biomechanics. Calgary, AB: University of Calgary; 1999. p. 147.
18. Schöllhorn WI. Applications of systems dynamic principles to technique and strength training. Acta Acad Olymp Est. 2000; (8):67–85.
19. Schöllhorn WI. Differenzielles Lehren und Lernen von Bewegung—Durch veränderte Annahmen zu neuen Konsequenzen. In Zur Vernetzung von Forschung und Lehre in Biomechanik, Sportmotorik und Trainingswissenschaft. Deutsche Vereinigung für Sportwissenschaf; Gabler, H., Göhner, U., Schiebl, F., Eds.; Czwalina: Hamburg, Germany, 2005; pp. 125–135.
20. Schöllhorn WI, Mayer-Kress G, Newell KM, Michelbrink M. Time scales of adaptive behavior and motor learning in the presence of stochastic perturbations. Hum Mov Sci. 2009; 28(3):319–333. doi: 10.1016 /j.humov.2008.10.005.
21. Schöllhorn W, Horst F. Effects of complex movements on the brain as a result increased decision-making. J Complex Health Sci. 2019; 2(2):40–45. doi: 10.21595/chs.2019.21190.
22. Apidogo JB, Ammar A, Salem A, Burdack J, Schöllhorn WI. Resonance effects in variable practice for handball, basketball, and volleyball skills: a study on contextual interference and differential learning. Sports (Basel). 2023; 12(1):5. doi: 10.3390/sports12010005.
23. Ammar A, Trabelsi K, Boujelbane MA, Boukhris OG, Jordan CH, Schöllhorn WI. The myth of contextual interference learning benefit in sports practice: a systematic review and meta-analysis. Educ Res Rev. 2023; 100537. doi: 10.1016/j.edurev.
24. Ammar A, Boujelbane MA, Simak ML, Fraile-Fuente I, Rizz N, Washif JA, et al. Unveiling the acute neurophysiological responses to strength training: an exploratory study on novices performing weightlifting bouts with different motor learning models. Biol Sport. 2024; 41(2):249–274. doi: 10.5114/biolsport .2024.133481.
25. Chandler P, Sweller J. Cognitive load theory and the format of instruction. Cogn Instr. 1991; 8(4):293–332. doi: 10.1207/s1532690xci0804_2.
26. Gentile AM. Movement science: implicit and explicit processes during acquisition of functional skills. Scand J Occup Ther. 1998; 5(1):7–16.
27. Ammar A, Trabelsi K, Boujelbane MA, et al. The effects of contextual interference learning on the acquisition and relatively permanent gains in skilled performance: a critical systematic review with multilevel meta-analysis. Educ Psychol Rev. 2024; 36:57. doi: 10.1007/s10648-024- 09892-z.
28. Schöllhorn WI, Nigg BM, Stefanyshyn D, Liu W. Identification of individual walking patterns using time discrete and time continuous data sets. Gait Posture. 2002; 15(2):180–186.
29. Apidogo JB, Burdack J, Schöllhorn WI. Learning multiple movements in parallel—accurately and in random order, or each with added noise? Int J Environ Res Public Health. 2022; 19(17):10960.
30. Beckmann H, Schöllhorn WI. Differential learning in shot put. In: Schöllhorn WI, Bohn C, Jäger JM, Schaper H, Alichmann M, editors. 1st European Workshop on Movement Science Book of Abstracts. Köln: Sport & Buch Strauß; 2003. p. 68.
31. Trockel M, Schöllhorn WI. Differential training in soccer. In: European Workshop on Movement Science Mechanics and Physiology; Müster, Germany. 2003. p. 22–24.
32. Hegen P, Schöllhorn WI. Get better in different areas at the same time without repeating? Parallel differential training of two techniques in football. Competitive sport. 2012; 42:17–23.
33. Apidogo JB, Burdack J, Schöllhorn WI. Repetition without repetition or differential learning of multiple techniques in volleyball?. Int J Environ Res Public Health. 2021; 18(19):10499.
34. Ammar A, Riemann BL, Masmoudi L, Blaumann M, Abdelkarim O, Hökelmann A. Kinetic and kinematic patterns during high intensity clean movement: searching for optimal load. J Sports Sci. 2018; 36(12):1319–1330. doi: 10.1080/02640414.2017.1376521.
35. Ammar A, Riemann BL, Trabelsi K, Blaumann M, Abdelkarim O, Chtourou H, Driss T, Hökelmann A. Comparison of 2- and 3-minute inter-repetition rest periods on maximal jerk technique and power maintenance. Res Q Exerc Sport. 2019; 90(3):287–296. doi: 10.1080/0270136 7.2019.1594664.
36. Ammar A, Riemann BL, Abdelkarim O, Driss T, Hökelmann A. Effect of 2- vs. 3-Minute Interrepetition Rest Period on Maximal Clean Technique and Performance. J Strength Cond Res. 2020 Sep; 34(9):2548–2556.
37. Souissi MA, Souissi H, Elghoul Y, Masmoudi L, Trabelsi O, Ammar A, et al. Information processing and technical knowledge contribute to self-controlled video feedback for children learning the snatch movement in weightlifting. Percept Mot Skills. 2021 Aug; 128(4):1785– 1805. doi: 10.1177 /00315125211011728.
38. Souissi MA, Elghoul Y, Souissi H, Masmoudi L, Ammar A, Chtourou H, et al. The effects of three correction strategies of errors on the snatch technique in 10–12-year-old children: a randomized controlled trial. J Strength Cond Res. 2023 Jun 1; 37(6):1218–1224. doi: 10.1519 /JSC.0000000000003707.
39. Oftadeh S, Bahram A, Yaali R, Ghadiri F, Schöllhorn WI. External focus or differential learning: is there an additive effect on learning a futsal goal kick? Int J Environ Res Public Health. 2022; 19(1):317. doi: 10.3390/ijerph 19010317.
40. Henz D, John A, Merz C, Schöllhorn WI. Post-task effects on EEG brain activity differ for various differential learning and contextual interference protocols. Front Hum Neurosci. 2018; 12:19.
41. Beck TW. The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res. 2013 Aug; 27(8):2323–2337. doi: 10.1519/JSC.0b013e318278eea0.
42. Faul F, Erdfelder E, Lang AG, Buchner A. G∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39:175–191. doi: 10.3758/BF0 3193146.
43. John A, Schöllhorn WI. Acute effects of instructed and self-created variable rope skipping on EEG brain activity and heart rate variability. Front Behav Neurosci. 2018; 12:311. doi: 10.3389/fnbeh .2018.00311.
44. Ammar A, Chtourou H, Hammouda O,
45. Trabelsi K, Chiboub J, Turki M, et al. Acute and delayed responses of C-reactive protein, malondialdehyde and antioxidant markers after resistance training session in elite weightlifters: effect of time of day. Chronobiol Int. 2015; 32(9):1211–1222. doi: 10.3109/07420528.2015 .1079215.
46. Ammar A, Chtourou H, Hammouda O, Turki M, Ayedi F, Kallel C, et al. Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: effect of time-of-day. Physiol Int. 2016; 103(2):243–261. doi: 10.1556/036.103.2016.2.11.
47. Ammar A, Chtourou H, Souissi N. Effect of time-of-day on biochemical markers in response to physical exercise. J Strength Cond Res. 2017; 31(1):272–282. doi: 10.1519/JSC.0000000000001481.
48. Schöllhorn WI, Nigg BM, Stefanyshyn D, Liu W. Identification of individual walking patterns using time discrete and time continuous data sets. Gait Posture. 2002; 15(2):180–186.
49. Soriano MA, Suchomel TJ, Comfort P. Weightlifting overhead pressing derivatives: a review of the literature. Sports Med. 2019; 49(6):867–885.
50. Waller MA, Piper T, Miller J. Coaching of the snatch/clean pulls with the high pull variation. Strength Cond J. 2009; 31(3):47–54.
51. Coe DP, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Effect of physical education and activity levels on academic achievement in children. Med Sci Sports Exerc. 2006; 38(8):1515–1519.
52. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008; 9(1):58–65.
53. Kupari M, Virolainen J, Koskinen P, Tikkanen MJ. Short-term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am J Cardiol. 1993; 72(12):897–903.
54. Dong JG. The role of heart rate variability in sports physiology. Exp Ther Med. 2016; 11(5):1531–1536.
55. Nago H, Kubo Y, Tsuno T, Kurosaka S, Muto M. A biomechanical comparison of successful and unsuccessful snatch attempts among elite male weightlifters. Sports. 2019; 7(6):151. doi: 10.3390/ sports7060151.
56. Cunanan AJ, Hornsby WG, South MA, Ushakova KP, Mizuguchi S, Sato K, et al. Survey of barbell trajectory and kinematics of the snatch lift from the 2015 world and 2017 Pan-American weightlifting championships. Sports (Basel). 2020; 8(9):118.
57. Storey A, Smith HK. Unique aspects of competitive weightlifting: performance, training and physiology. Sports Med. 2012; 42:769–790.
58. Souissi MA, Ammar A, Trabelsi O, Glenn JM, Boukhris O, Trabelsi K, et al. Distance motor learning during the COVID-19 induced confinement: video feedback with a pedagogical activity improves the snatch technique in young athletes. Int J Environ Res Public Health. 2021 Mar 16; 18(6):3069. doi: 10.3390/ijerph18063069.
59. Cube FV. Kybernetische Grundlagen des Lernens und Lehrens, 1st ed.; Ernst Klett Verlag: Stuttgart, Germany; 1965.
60. Haykin S. Neural Networks: A Comprehensive Foundation, 1st ed.; McMaster University: Hamilton, ON, Canada; 1994.
61. Dietrich A. Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn. 2003; 12:231–256.
62. Henz D, Kenville R, Simon M, Leinberger O, Schöllhorn WI. EEG brain activity in differential, contextual interference, and classical repetition-oriented badminton serve training. In: Radmann A, Hedenborg S, Tsolakidis E, editors. Book of Abstracts of the 20th Annual Congress of the European College of Sport Science in Malmö. Cologne: European College of Sport Science; 2015. p. 53.
63. Henz D, Schöllhorn WI. Differential training facilitates early consolidation in motor learning. Front Behav Neurosci. 2016; 10:1–9.
64. Jarus T, Goverover Y. Effects of contextual interference and age on acquisition, retention, and transfer of motor skill. Percept Mot Skills. 1999; 88(2):437–447.
65. Vera JG, Alvarez JC, Medina MM. Effects of different practice conditions on acquisition, retention, and transfer of soccer skills by 9-year-old schoolchildren. Percept Mot Skills. 2008; 106(2):447–460.
66. Marteniuk RG. Individual differences in motor performance and learning. Exerc Sport Sci Rev. 1974; 2(1):103–130.
67. Schöllhorn WI, Schaper H, Kimmeskamp S, Milani T. Inter- and intra-individual differentiation of dynamic foot pressure patterns by means of artificial neural nets. Gait Posture. 2002; 16(Suppl 1).
68. Bauer HU, Schöllhorn WI. Self-organizing maps for the analysis of complex movement patterns. Neural Process Lett. 1997; 8:193–198.
69. Janssen D, Schöllhorn WI, Lubienetzki J, Fölling K, Kokenge H, Davids K. Recognition of emotions in gait patterns by means of artificial neural nets. J Nonverbal Behav. 2008; 32(2):79–92. doi: 10.1007/s10919-007-0045-3.
70. Janssen D, Schöllhorn WI, Newell KM, Jäger JM, Rost F, Vehof K. Diagnosing fatigue in gait patterns by support vector machines and self-organizing maps. Hum Mov Sci. 2011; 30(5):966–975. doi: 10.1016/j.humov.2010.08.010.
71. Albrecht S, Janssen D, Quarz E, Newell KM, Schöllhorn WI. Individuality of movements in music-finger and body movements during playing of the flute. Hum Mov Sci. 2014; 35:131–144.
72. Horst F, Kramer F, Schäfer B, Eekhoff A, Hegen P, Nigg BM, et al. Daily changes of individual gait patterns identified by means of support vector machines. Gait Posture. 2016; 49:309–314. doi: 10.1016/j.gaitpost.2016.07.073.
73. Horst F, Eekhoff A, Newell KM, Schöllhorn WI. Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression. PLoS One. 2017; 12(6), doi: 10.1371/journal. pone.0179738.
74. Horst F, Mildner M, Schöllhorn WI. One-year persistence of individual gait patterns identified in a follow-up study – a call for individualized diagnose and therapy. Gait Posture. 2017; 58:476–480. doi: 10.1016/j.gaitpost.2017.09.003.
75. Horst F, Lapuschkin S, Samek W, Müller K, Schöllhorn WI. Explaining the unique nature of individual gait patterns with deep learning. Sci Rep. 2018; 9.
76. Burdack J, Giesselbach S, Simak ML, Ndiaye ML, Marquardt C, Schöllhorn WI. Identifying underlying individuality across running, walking, and handwriting patterns with conditional cycle-consistent generative adversarial networks. Front Bioeng Biotechnol. 2023 Aug 4; 11:1204115. doi: 10.3389/fbioe.2023.1204115.
77. Burdack J, Horst F, Aragonés D, Eekhoff A, Schöllhorn WI. Fatigue-related and timescale-dependent changes in individual movement patterns identified using support vector machine. Front Psychol. 2020; 11:551548. doi: 10.3389/fpsyg.2020.551548.
78. Horst F, Janssen D, Beckmann H, Schöllhorn WI. Can individual movement characteristics across different throwing disciplines be identified in high-performance decathletes? Front Psychol. 2020 Sep 18; 11:2262. doi: 10.3389 /fpsyg.2020.02262.
79. Ammar A, Simak ML, Salem A, Horst F and Schöllhorn WI (2024), Unveiling individuality in the early phase of motor learning: a machine learning approach for analysing weightlifting technique in novices.
80. Front. Bioeng. Biotechnol. 12:1426058. doi: 10.3389/fbioe.2024.1426058
81. Baumann W. About cinematographic motion analysis. Med World. 1968; 10:2168–2174.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.