eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2024
vol. 62
 
Share:
Share:
Original paper

Alterations in mRNA level of proteins related to redox state and mitochondria in an Alzheimer’s disease animal model: Promising targets in neuroprotection

Sylwia Żulińska
1
,
Przemysław L. Wencel
2
,
Kinga Czubowicz
2
,
Joanna B. Strosznajder
1

  1. Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
  2. Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
Folia Neuropathol 2024; 62 (3): 237-248
Online publish date: 2024/10/07
Article file
- Alterations.pdf  [1.47 MB]
Get citation
 
PlumX metrics:
 
1. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 2018; 592: 692-702.
2. Bahn G, Jo DG. Therapeutic approaches to Alzheimer’s disease through modulation of NRF2. Neuromolecular Med 2019; 21: 1-11.
3. Bai P, Cantó C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011; 13: 461-468.
4. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, Holmans PA, Boland A. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 2022; 54: 412-436.
5. Bitner BR, Perez-Torres CJ, Hu L, Inoue T, Pautler RG. Improvements in a mouse model of Alzheimer’s disease through SOD2 overexpression are due to functional and not structural alterations. Magn Reson Insights 2012; 5: 1-6.
6. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7: 2426.
7. Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A perfect match for neurodegeneration? Antioxidants (Basel) 2023; 12: 1564.
8. Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 2020; 12: 1759091419899782.
9. Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 2012; 1819: 921-929.
10. Cantó C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98-105.
11. Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34: 1168-1201.
12. Cieślik M, Czapski GA, Strosznajder JB. The molecular mechanism of amyloid b42 peptide toxicity: The role of sphingosine kinase-1 and mitochondrial sirtuins. PLOS One 2015; 10: e0137193.
13. Cieślik M, Czapski GA, Wójtowicz S, Wieczorek I, Wencel PL, Strosznajder RP, Jaber V, Lukiw WJ, Strosznajder JB. Alterations of transcription of genes coding anti-oxidative and mitochondria-related proteins in amyloid b toxicity: Relevance to Alzheimer’s disease. Mol Neurobiol 2020; 57: 1374-1388.
14. Cimini A, Moreno S, D’Amelio M, Cristiano L, D’Angelo B, Falone S, Benedetti E, Carrara P, Fanelli F, Cecconi F, Amicarelli F, Cerù MP. Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer’s disease: a role for peroxisomes. J Alzheimers Dis 2009; 18: 935-952.
15. Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (N Y) 2021; 7: e12179.
16. Czapski GA, Cieślik M, Wencel PL, Wójtowicz S, Strosznajder RP, Strosznajder JB. Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders. Biochim Biophys Acta Mol Cell Res 2018; 1865: 281-288.
17. Dawson TM, Dawson VL. Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 2017; 57: 437-454.
18. De Leo ME, Borrello S, Passantino M, Palazzotti B, Mordente A, Daniele A, Filippini V, Galeotti T, Masullo C. Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer’s disease. Neurosci Lett 1998; 250: 173-176.
19. De Plano LM, Calabrese G, Rizzo MG, Oddo S, Caccamo A. The role of the transcription factor Nrf2 in Alzheimer’s disease: Therapeutic opportunities. Biomolecules 2023; 13: 549.
20. Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 2013; 5: a015008.
21. Du H, Guo L, Yan SS. Synaptic mitochondrial pathology in Alzheimer’s disease. Antioxid Redox Signal 2012; 16: 1467-1475.
22. Eckert GP, Eckert SH, Eckmann J, Hagl S, Muller WE, Friedland K. Olesoxime improves cerebral mitochondrial dysfunction and enhances Ab levels in preclinical models of Alzheimer’s disease. Exp Neurol 2020; 329: 113286.
23. El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 2009; 66: 3219-3234.
24. Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, Puoliväli J, Scearce-Levie K, Masliah E, Mucke L. Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci 2006; 26: 5167-5179.
25. Felici R, Cavone L, Lapucci A, Guasti D, Bani D, Chiarugi A. PARP inhibition delays progression of mitochondrial encephalopathy in mice. Neurotherapeutics 2014; 11: 651-664.
26. Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013; 62: 4-12.
27. Gilbert SF. Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J Biosci 2005; 30: 65-74.
28. Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial fission protein 1: Emerging roles in organellar form and function in health and disease. Front Endocrinol (Lausanne) 2021; 12: 660095.
29. Jurcau A. Insights into the pathogenesis of neurodegenerative diseases: Focus on mitochondrial dysfunction and oxidative stress. Int J Mol Sci 2021; 22: 11847.
30. Jęśko H, Strosznajder RP. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol 2016; 54: 212-233.
31. Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 2017; 42: 876-890.
32. Jörg M, Plehn JE, Friedland K, Müller WE. Mitochondrial dysfunction as a causative factor in Alzheimer’s disease-spectrum disorders: Lymphocytes as a window to the brain. Curr Alzheimer Res 2021; 18: 733-752.
33. Kang D, Hamasaki N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA. Ann N Y Acad Sci 2005; 1042: 101-108.
34. Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, Mirzaei N, Irvine EE, Mazarakis ND, Sastre M. PPARg-coactivator-1a gene transfer reduces neuronal loss and amyloid-b generation by reducing b-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 2016; 113: 12292-12297.
35. Katsouri L, Parr C, Bogdanovic N, Willem M, Sastre M. PPAR co-activator-1 (PGC-1) reduces amyloid-generation through a PPAR-dependent mechanism. J Alz Dis 2011; 25: 1-12.
36. Lapucci A, Pittelli M, Rapizzi E, Felici R, Moroni F, Chiarugi A. Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription. Mol Pharmacol 2011; 79: 932-940.
37. Ma Y, Dammer EB, Felsky D, Duong DM, Klein HU, White CC, Zhou M, Logsdon BA, McCabe C, Xu J, Wang M, Wingo TS, Lah JJ, Zhang B, Schneider J, Allen M, Wang X, Ertekin-Taner N, Seyfried NT, Levey AI, Bennett DA, De Jager PL. Atlas of RNA editing events affecting protein expression in aged and Alzheimer’s disease human brain tissue. Nat Commun 2021; 12: 7035.
38. Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, Qi X, Ramachandran R. Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J Biol Chem 2016; 291: 493-507.
39. Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 2016; 25: 5148-5166.
40. Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol 2020; 11: 585821.
41. Massaad CA, Washington TM, Pautler RG, Klann E. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2009; 106: 13576-12581.
42. Maurer I, Zierz S, Möller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 2000; 21: 455-462.
43. Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittael K, Haute CV, Checler F, Godaux E, Cordell B, Leuven FV. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 1999; 274: 6483-6492.
44. Moneim AE. Oxidant/antioxidant imbalance and the risk of Alzheimer’s disease. Curr Alzheimer Res 2015; 12: 335-349.
45. Moore LD, Le T, Fan G. DNA Methylation and its basic function. Neuropsychopharmacology 2013; 38: 23-38.
46. Mota BC, Sastre M. The role of PGC1a in Alzheimer’s disease and therapeutic interventions. Int J Mol Sci 2021; 22: 5769.
47. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid b protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 2011; 286: 44557-44568.
48. Nisbett KE, Pinna G. Emerging therapeutic role of PPAR-a in cognition and emotions. Front Pharmacol 2018; 9: 998.
49. Oliver D, Reddy PH. Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 2019; 8: 961.
50. Pai AA, Luca F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. Wiley Interdiscip Rev RNA 2019; 10: e1503.
51. Patel S, Khan H, Majumdar A. Crosstalk between sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 2022; 37: 2181-2195.
52. Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 2019; 176: 3489-3507.
53. Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25: 67-75.
54. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ, Reddy AP, Mao P, Manczak M. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 2012; 1822: 639-649.
55. Sagheddu C, Melis M, Muntoni AL, Pistis M. Repurposing peroxisome proliferator-activated receptor agonists in neurological and psychiatric disorders. Pharmaceuticals (Basel) 2021; 14: 1025.
56. Satoh J, Kawana N, Yamamoto Y. Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul Syst Bio 2013; 7: 139-152.
57. Schmitt K, Grimm A, Kazmierczak A, Strosznajder JB, Götz J, Eckert A. Insights into mitochondrial dysfunction: Aging, amyloid-b, and Tau – A deleterious trio. Antioxid Redox Signal 2012; 16: 1456-1466.
58. Song Y, Zhu XY, Zhang XM, Xiong H. Targeted mitochondrial epigenetics: A new direction in Alzheimer’s disease treatment. Int J Mol Sci 2022; 23: 9703.
59. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 2012; 7: 1235-1246.
60. Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB. Recent insights on the role of PPAR-b/d in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med 2021; 23: 86-98.
61. Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP. Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol 2012; 46: 78-84.
62. Sweeney G, Song J. The association between PGC-1a and Alzheimer’s disease. Anat Cell Biol 2016; 49: 1-6.
63. Szczesny B, Marcatti M, Ahmad A, Montalbano M, Brunyánszki A, Bibli SI, Papapetropoulos A, Szabo C. Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1
64. links oxidative stress to inflammation in epithelial cells. Sci Rep 2018; 8: 914.
65. Tang BL. Sirt1 and the mitochondria. Mol Cells 2016; 39: 87-95.
66. Troutwine BR, Strope TA, Franczak E, Lysaker CR, Hamid L, Mansel C, Stopperan JA, Gouvion CM, Haeri M, Swerdlow RH, Wilkins HM. Mitochondrial function and Ab in Alzheimer’s disease postmortem brain. Neurobiol Dis 2022; 171: 105781.
67. Tufano M, Pinna G. Is there a future for PPARs in the treatment of neuropsychiatric disorders? Molecules 2020; 25: 1062.
68. Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van Den Haute C, Mercken M, Moechars D, Laenen I, Kuiperi C, Bruynseels K, Tesseur I, Loos R, Vanderstichele H, Checler F, Sciot R, Van Leuven F. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 2000; 157: 1283-1298.
69. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868-1876.
70. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 2003; 12: 1137-1149.
71. Wang R, Li JJ, Diao S, Kwak YD, Liu L, Zhi L, Büeler H, Bhat NR, Williams RW, Park EA, Liao FF. Metabolic stress modulates Alzheimer’s b-secretase gene transcription via SIRT1-PPARg-PGC-1 in neurons. Cell Metab 2013; 17: 685-694.
72. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 2020; 15: 30.
73. Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: Promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem Res 2020; 45: 972-988.
74. Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current landscape of NRF2 biomarkers in clinical trials. Antioxidants 2020; 9: 716.
75. Yang D, Ying J, Wang X, Zhao T, Yoon S, Fang Y, Zheng Q, Liu X, Yu W, Hua F. Mitochondrial dynamics: A key role in neurodegeneration and a potential target for neurodegenerative disease. Front Neurosci 2021; 15: 654785.
76. Youssef P, Chami B, Lim J, Middleton T, Sutherland GT, Witting PK. Evidence supporting oxidative stress in a moderately affected area of the brain in Alzheimer’s disease. Sci Rep 2018; 8: 11553.
77. Yu TW, Lane HY, Lin CH. Novel therapeutic approaches for Alzheimer’s disease: An updated review. Int J Mol Sci 2021; 22: 8208.
Copyright: © 2024 Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.