eISSN: 1897-4309
ISSN: 1428-2526
Contemporary Oncology/Współczesna Onkologia
Current issue Archive Manuscripts accepted About the journal Supplements Addendum Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2024
vol. 28
 
Share:
Share:
Original paper

Cytotoxicity of gold nanoparticles to human lymphocytes: a comparison between rod-shaped and spherical nanoparticles

Jacek Sikora
1
,
Paulina Błaszkiewicz
2
,
Alina Dudkowiak
2
,
Joanna Jagielska
3
,
Jakub Żurawski
1

  1. Department of Immunobiology, Poznan University of Medical Sciences, Poznan, Poland
  2. Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan, Poland
  3. Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
Contemp Oncol (Pozn) 2024; 28 (4): 326–334
Online publish date: 2025/01/15
Article file
- Cytotoxicity of gold.pdf  [0.15 MB]
Get citation
 
PlumX metrics:
 
1. Jeong EH, Jung G, Hong CA, Lee H. Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 2014; 37: 53-59.
2. Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. A mini review. Bioeng 2019; 6: 53.
3. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta 2018; 184: 537-556.
4. Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 2014; 195: 332-351.
5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41: 1578-1586.
6. Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications. Biosensors 2020; 10: 146. DOI: 10.3390/bios10100146.
7. Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, et al. New targeted gold nanorods for the treatment of glioblastoma by photodynamic therapy. J Clin Med 2019; 8: 2205. DOI: 10.3390/jcm8122205.
8. Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, et al. Improvement of gold nanorods in photothermal therapy: recent progress and perspective. Front Pharmacol 2021; 12: 664123. DOI: 10.3389/fphar. 2021.664123.
9. Marangoni VS, Bernardi JC, Reis IB, Fávaro WJ, Zucolotto V. Photothermia and activated drug release of natural cell membrane coated plasmonic gold nanorods and  lapachone. ACS Appl Bio Mater 2019; 2: 728-736.
10. Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 2023; 17: 7979-8003.
11. Błaszkiewicz P, Kotkowiak M. Gold-based nanoparticles systems in phototherapy – current strategies. Curr Med Chem 2018; 25: 5914-5929.
12. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a stra­tegy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliver Rev 2016; 99 (Pt A): 28-51.
13. Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 2019; 119: 664-699.
14. Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU, et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm 2019; 141: 70-80.
15. Hočevar S, Milošević A, Rodriguez-Lorenzo L, Ackermann-Hirschi L, Mottas I, Petri-Fink A, et al. Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro. Acs Nano 2019; 13: 6790-6800.
16. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12: 2313-2333.
17. Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophysics Rep 2021; 26: 100991. DOI: 10.1016/j.bbrep. 2021.100991.
18. Enea M, Pereira E, Almeida MP de, Araújo AM, Bastos M de L, Carmo H. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells. Nanomaterials (Basel) 2020; 10: 995. DOI: 10.3390/nano10050995.
19. Gallud A, Klöditz K, Ytterberg J, Östberg N, Katayama S, Skoog T, et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Sci Rep 2019; 9: 4366. DOI: 10.1038/s41598-019-40579-6.
20. Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci 2015; 10: 1401-1417.
21. Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, et al. Immunotherapeutic nanoparticles: from autoimmune disease control to the development of vaccines. Biomaterials Adv 2022; 135: 212726-212726.
22. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 2009; 5: 701-708.
23. Zhao Y, Wang Y, Ran F, Cui Y, Liu C, Zhao Q, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 2017; 7: 4131.
24. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6: 662-668.
25. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 2010; 5: 579-583.
26. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc National Acad Sci 2005; 102: 9469-9474.
27. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Na- pier ME, et al. The effect of particle design on cellular internalization pathways. Proc National Acad Sci 2008; 105: 11613-11618.
28. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31: 438-448.
29. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruo­slahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc National Acad Sci 2013; 110: 10753-10758.
30. Arnida, Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30: 212-217.
31. Lin J, Miao L, Zhong G, Lin CH, Dargazangy R, Alexander-Katz A. Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Commun Biol 2020; 3: 205. DOI: 10.1038/s42003-020-0917-1.
32. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Daw- son KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013; 135: 1438-1444.
33. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6: 4483-4493.
34. Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco- Canosa JB, et al. Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 2011; 5: 6434-6448.
35. Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol 2012; 54: 581-598.
36. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxi­city of gold nanoparticles. Nanoscale Res Lett 2009; 4: 858-864.
37. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010; 31: 7606-7619.
38. Kinnear C, Rodriguez-Lorenzo L, Clift MJD, Goris B, Bals S, Rothen- Rutishauser B, et al. Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. Nanoscale 2016; 8: 16416-16426.
39. Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, et al. Size- dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 2011; 6: 2071-2081.
40. Macintyre AN, Rathmell JC. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab 2013; 1: 5. DOI: 10.1186/2049-3002-1-5.
41. Błaszkiewicz P, Kotkowiak M, Dudkowiak A. Fluorescence quenching and energy transfer in a system of hybrid laser dye and functionalized gold nanoparticles. J Lumin 2017; 183: 303-310.
42. Talarska P, Błaszkiewicz P, Kostrzewa A, Wirstlein P, Cegłowski M, Nowaczyk G, et al. Effects of spherical and rod-like gold nanoparticles on the reactivity of human peripheral blood leukocytes. Antioxidants 2024; 13: 157. DOI: 10.3390/antiox13020157.
43. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003; 15: 1957-1962.
44. Błaszkiewicz P, Kotkowiak M, Coy E, Dudkowiak A. Laser-induced optoacoustic spectroscopy studies of inorganic functionalized metallic nanorods. J Phys Chem C 2019; 123: 27181-27186.
45. Błaszkiewicz P, Kotkowiak M, Coy E, Dudkowiak A. Tailoring fluorescence and singlet oxygen generation of a chlorophyll derivative and gold nanorods via a silica shell. J Phys Chem C 2020; 124: 2088-2095.
46. Fernández-López C, Mateo-Mateo C, Álvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marz’an LM. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 2009; 25: 13894-13899.
47. Rahme K, Chen L, Hobbs RG, Morris MA, O’Driscoll C, Holmes JD. PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. Rsc Adv 2013; 3: 6085-6094.
48. Shimmin RG, Schoch AB, Braun PV. Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir 2004; 20: 5613-5620.
49. Szustakiewicz P, Kołsut N, Leniart A, Lewandowski W. Universal method for producing reduced graphene oxide/gold nanoparticles composites with controlled density of grafting and long-term stability. Nanomaterials (Basel) 2019; 9: 602. DOI: 10.3390/nano­9040602.
50. Tim B, Błaszkiewicz P, Nowicka AB, Kotkowiak M. Optimizing SERS performance through aggregation of gold nanorods in Langmuir-Blodgett films. Appl Surf Sci 2022; 573: 151518. DOI: https://doi.org/10.1016/j.apsusc.2021.151518.
51. Manson J, Kumar D, Meenan BJ, Dixon D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 2011; 44: 99-105.
52. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018; 2018: pdb.prot095505. DOI: 10.1101/pdb.prot095505.
53. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
54. Stiufiuc R, Iacovita C, Nicoara R, Stiufiuc G, Florea A, Achim M, et al. One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. J Nanomater 2013; 2013. DOI: https://doi.org/10.1155/2013/146031.
55. Tseng KH, Hsieh CL, Huang JC, Tien DC. The effect of NaCl/pH on colloidal nanogold produced by pulsed spark discharge. J Nanomater 2015; 2015. DOI: 10.1155/2015/612324.
56. Zhang Z, Lin M. Fast loading of PEG–SH on CTAB-protected gold nanorods. RSC Adv 2014; 4: 17760-17767.
57. Liptrott NJ, Kendall E, Nieves DJ, Farrell J, Rannard S, Fernig DG, et al. Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a mixed matrix. Nanomedicine (Lond) 2014; 9: 2467-2479.
58. Devanabanda M, Latheef SA, Madduri R. Immunotoxic effects of gold and silver nanoparticles: Inhibition of mitogen-induced proliferative responses and viability of human and murine lymphocytes in vitro. J Immunotoxicol 2016; 13: 397-902.
59. Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015; 574: 193-203.
60. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annu Rev 2005; 11: 127-152.
61. Kotecki M, Pawlak AL, Wiktorowicz KE. The inhibitory effect of theophylline on cell cycle kinetics of human lymphocytes in vitro. Arch Immunol Ther Exp (Warsz) 1989; 37: 725-733.
62. Takase K, Terada N, Lucas JJ, Gelfand EW. Control of cell cycle entry and progression in mitogen-stimulated human B lymphocytes. J Cell Physiol 1995; 162: 246-255.
63. Saqr AA, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Anwer MdK, et al. Synthesis of gold nanoparticles by using green machinery: characterization and in vitro toxicity. Nanomaterials (Basel) 2021; 11: 808. DOI: 10.3390/nano11030808.
64. Abo-Zeid MAM, Liehr T, Gamal-Eldeen AM, Zawrah M, Ali M, Othman MAK. Potential of rod, sphere and semi-cube shaped gold nanoparticles to induce cytotoxicity and genotoxicity in human blood lymphocytes in vitro. Eur J Nanomed 2015; 7. DOI: https://doi.org/10.1515/ejnm-2014-0031.
65. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size- dependent cytotoxicity of gold nanoparticles. Small 2007; 3: 1941-1949.
66. Magogotya M, Vetten M, Roux-van der Merwe MP, Badenhorst J, Gulumian M. In vitro toxicity and internalization of gold nanoparticles (AuNPs) in human epithelial colorectal adenocarcinoma (Caco-2) cells and the human skin keratinocyte (HaCaT) cells. Mutat Res Genetic Toxicol Environ Mutagen 2022; 883: 503556. DOI: 10.1016/j.mrgentox.2022.503556.
67. Chueh PJ, Liang RY, Lee YH, Zeng ZM, Chuang SM. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater 2014; 264: 303-312.
68. Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz- Pawlak A, Nowaczyk G, Zaleska-Medynska A, et al. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med 2019; 30: 22. DOI: 10.1007/s10856-019-6221-2.
69. Vijayakumar S, Ganesan S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater 2012; 2012. DOI: https://doi.org/10.1155/2012/734398.
70. Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G, et al. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fibre Toxicol 2009; 6: 18. DOI: 10.1186/1743-8977-6-18.
71. Bhamidipati M, Fabris L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry. Bioconjugate Chem 2017; 28: 449-460.
72. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliver Rev 2012; 64: 190-199.
73. Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega 2019; 4: 242-256.
74. Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J Nanomater 2012; 2012. DOI: https://doi.org/10.1155/2012/375496.
75. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 2010; 4: 120-137.
76. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28: 92. DOI: 10.1007/s10856-017-5902-y.
77. Vales G, Suhonen S, Siivola KM, Savolainen KM, Catalán J, Norppa H. Genotoxicity and cytotoxicity of gold nanoparticles in vitro: role of surface functionalization and particle size. Nanomaterials (Basel) 2020; 10: 271. DOI: 10.3390/nano10020271.
78. White BE, White MK, Alsudani ZAN, Watanabe F, Biris AS, Ali N. Cellular uptake of gold nanorods in breast cancer cell lines. Nanomaterials (Basel) 2022; 12: 937. DOI: 10.3390/nano12060937.
79. Henson JC, Brickell A, Kim JW, Jensen H, Mehta JL, Jensen M, et al. PEGylated gold nanoparticle toxicity in cardiomyocytes: assessment of size, concentration, and time dependency. IEEE Trans Nanobioscience 2022; 21: 387-394.
80. Wang P, Wu Q, Wang F, Zhang Y, Tong L, Jiang T, et al. Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine (Lond) 2018; 13: 2245-2259.
81. Yen H, Hsu S, Tsai C. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009; 5: 1553-1561.
82. Le Guével X, Palomares F, Torres MJ, Blanca M, Fernandez TD, Mayorga C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. Rsc Adv 2015; 5: 85305-85309.
83. Zupke O, Distler E, Jrchott A, Paiphansiri U, Dass M, Thomas S, et al. Nanoparticles and antigen-specific T-cell therapeutics: a com­prehensive study on uptake and release. Nanomedicine 2015; 10: 1063-1076.
84. Zhu GH, Azharuddin M, Islam R, Rahmoune H, Deb S, Kanji U, et al. Innate immune invisible ultrasmall gold nanoparticles – framework for synthesis and evaluation. Acs Appl Mater Inter 2021; 13: 23410-23422.
85. Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med 2014; 6: 172-178.
86. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019; 7: 167. DOI: 10.3389/fchem.2019.00167.
Copyright: © 2025 Termedia Sp. z o. o. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.