1. Jeong EH, Jung G, Hong CA, Lee H. Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 2014; 37: 53-59.
2.
Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. A mini review. Bioeng 2019; 6: 53.
3.
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta 2018; 184: 537-556.
4.
Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 2014; 195: 332-351.
5.
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41: 1578-1586.
6.
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications. Biosensors 2020; 10: 146. DOI: 10.3390/bios10100146.
7.
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, et al. New targeted gold nanorods for the treatment of glioblastoma by photodynamic therapy. J Clin Med 2019; 8: 2205. DOI: 10.3390/jcm8122205.
8.
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, et al. Improvement of gold nanorods in photothermal therapy: recent progress and perspective. Front Pharmacol 2021; 12: 664123. DOI: 10.3389/fphar. 2021.664123.
9.
Marangoni VS, Bernardi JC, Reis IB, Fávaro WJ, Zucolotto V. Photothermia and activated drug release of natural cell membrane coated plasmonic gold nanorods and lapachone. ACS Appl Bio Mater 2019; 2: 728-736.
10.
Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 2023; 17: 7979-8003.
11.
Błaszkiewicz P, Kotkowiak M. Gold-based nanoparticles systems in phototherapy – current strategies. Curr Med Chem 2018; 25: 5914-5929.
12.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliver Rev 2016; 99 (Pt A): 28-51.
13.
Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 2019; 119: 664-699.
14.
Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU, et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm 2019; 141: 70-80.
15.
Hočevar S, Milošević A, Rodriguez-Lorenzo L, Ackermann-Hirschi L, Mottas I, Petri-Fink A, et al. Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro. Acs Nano 2019; 13: 6790-6800.
16.
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12: 2313-2333.
17.
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophysics Rep 2021; 26: 100991. DOI: 10.1016/j.bbrep. 2021.100991.
18.
Enea M, Pereira E, Almeida MP de, Araújo AM, Bastos M de L, Carmo H. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells. Nanomaterials (Basel) 2020; 10: 995. DOI: 10.3390/nano10050995.
19.
Gallud A, Klöditz K, Ytterberg J, Östberg N, Katayama S, Skoog T, et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Sci Rep 2019; 9: 4366. DOI: 10.1038/s41598-019-40579-6.
20.
Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci 2015; 10: 1401-1417.
21.
Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, et al. Immunotherapeutic nanoparticles: from autoimmune disease control to the development of vaccines. Biomaterials Adv 2022; 135: 212726-212726.
22.
Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 2009; 5: 701-708.
23.
Zhao Y, Wang Y, Ran F, Cui Y, Liu C, Zhao Q, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 2017; 7: 4131.
24.
Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6: 662-668.
25.
Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 2010; 5: 579-583.
26.
Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc National Acad Sci 2005; 102: 9469-9474.
27.
Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Na- pier ME, et al. The effect of particle design on cellular internalization pathways. Proc National Acad Sci 2008; 105: 11613-11618.
28.
Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31: 438-448.
29.
Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc National Acad Sci 2013; 110: 10753-10758.
30.
Arnida, Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30: 212-217.
31.
Lin J, Miao L, Zhong G, Lin CH, Dargazangy R, Alexander-Katz A. Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Commun Biol 2020; 3: 205. DOI: 10.1038/s42003-020-0917-1.
32.
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Daw- son KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013; 135: 1438-1444.
33.
Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6: 4483-4493.
34.
Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco- Canosa JB, et al. Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 2011; 5: 6434-6448.
35.
Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol 2012; 54: 581-598.
36.
Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 2009; 4: 858-864.
37.
Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010; 31: 7606-7619.
38.
Kinnear C, Rodriguez-Lorenzo L, Clift MJD, Goris B, Bals S, Rothen- Rutishauser B, et al. Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. Nanoscale 2016; 8: 16416-16426.
39.
Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, et al. Size- dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 2011; 6: 2071-2081.
40.
Macintyre AN, Rathmell JC. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab 2013; 1: 5. DOI: 10.1186/2049-3002-1-5.
41.
Błaszkiewicz P, Kotkowiak M, Dudkowiak A. Fluorescence quenching and energy transfer in a system of hybrid laser dye and functionalized gold nanoparticles. J Lumin 2017; 183: 303-310.
42.
Talarska P, Błaszkiewicz P, Kostrzewa A, Wirstlein P, Cegłowski M, Nowaczyk G, et al. Effects of spherical and rod-like gold nanoparticles on the reactivity of human peripheral blood leukocytes. Antioxidants 2024; 13: 157. DOI: 10.3390/antiox13020157.
43.
Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003; 15: 1957-1962.
44.
Błaszkiewicz P, Kotkowiak M, Coy E, Dudkowiak A. Laser-induced optoacoustic spectroscopy studies of inorganic functionalized metallic nanorods. J Phys Chem C 2019; 123: 27181-27186.
45.
Błaszkiewicz P, Kotkowiak M, Coy E, Dudkowiak A. Tailoring fluorescence and singlet oxygen generation of a chlorophyll derivative and gold nanorods via a silica shell. J Phys Chem C 2020; 124: 2088-2095.
46.
Fernández-López C, Mateo-Mateo C, Álvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marz’an LM. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 2009; 25: 13894-13899.
47.
Rahme K, Chen L, Hobbs RG, Morris MA, O’Driscoll C, Holmes JD. PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. Rsc Adv 2013; 3: 6085-6094.
48.
Shimmin RG, Schoch AB, Braun PV. Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir 2004; 20: 5613-5620.
49.
Szustakiewicz P, Kołsut N, Leniart A, Lewandowski W. Universal method for producing reduced graphene oxide/gold nanoparticles composites with controlled density of grafting and long-term stability. Nanomaterials (Basel) 2019; 9: 602. DOI: 10.3390/nano9040602.
50.
Tim B, Błaszkiewicz P, Nowicka AB, Kotkowiak M. Optimizing SERS performance through aggregation of gold nanorods in Langmuir-Blodgett films. Appl Surf Sci 2022; 573: 151518. DOI: https://doi.org/10.1016/j.apsusc.2021.151518.
51.
Manson J, Kumar D, Meenan BJ, Dixon D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 2011; 44: 99-105.
52.
Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018; 2018: pdb.prot095505. DOI: 10.1101/pdb.prot095505.
53.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
54.
Stiufiuc R, Iacovita C, Nicoara R, Stiufiuc G, Florea A, Achim M, et al. One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. J Nanomater 2013; 2013. DOI: https://doi.org/10.1155/2013/146031.
55.
Tseng KH, Hsieh CL, Huang JC, Tien DC. The effect of NaCl/pH on colloidal nanogold produced by pulsed spark discharge. J Nanomater 2015; 2015. DOI: 10.1155/2015/612324.
56.
Zhang Z, Lin M. Fast loading of PEG–SH on CTAB-protected gold nanorods. RSC Adv 2014; 4: 17760-17767.
57.
Liptrott NJ, Kendall E, Nieves DJ, Farrell J, Rannard S, Fernig DG, et al. Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a mixed matrix. Nanomedicine (Lond) 2014; 9: 2467-2479.
58.
Devanabanda M, Latheef SA, Madduri R. Immunotoxic effects of gold and silver nanoparticles: Inhibition of mitogen-induced proliferative responses and viability of human and murine lymphocytes in vitro. J Immunotoxicol 2016; 13: 397-902.
59.
Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015; 574: 193-203.
60.
Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annu Rev 2005; 11: 127-152.
61.
Kotecki M, Pawlak AL, Wiktorowicz KE. The inhibitory effect of theophylline on cell cycle kinetics of human lymphocytes in vitro. Arch Immunol Ther Exp (Warsz) 1989; 37: 725-733.
62.
Takase K, Terada N, Lucas JJ, Gelfand EW. Control of cell cycle entry and progression in mitogen-stimulated human B lymphocytes. J Cell Physiol 1995; 162: 246-255.
63.
Saqr AA, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Anwer MdK, et al. Synthesis of gold nanoparticles by using green machinery: characterization and in vitro toxicity. Nanomaterials (Basel) 2021; 11: 808. DOI: 10.3390/nano11030808.
64.
Abo-Zeid MAM, Liehr T, Gamal-Eldeen AM, Zawrah M, Ali M, Othman MAK. Potential of rod, sphere and semi-cube shaped gold nanoparticles to induce cytotoxicity and genotoxicity in human blood lymphocytes in vitro. Eur J Nanomed 2015; 7. DOI: https://doi.org/10.1515/ejnm-2014-0031.
65.
Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size- dependent cytotoxicity of gold nanoparticles. Small 2007; 3: 1941-1949.
66.
Magogotya M, Vetten M, Roux-van der Merwe MP, Badenhorst J, Gulumian M. In vitro toxicity and internalization of gold nanoparticles (AuNPs) in human epithelial colorectal adenocarcinoma (Caco-2) cells and the human skin keratinocyte (HaCaT) cells. Mutat Res Genetic Toxicol Environ Mutagen 2022; 883: 503556. DOI: 10.1016/j.mrgentox.2022.503556.
67.
Chueh PJ, Liang RY, Lee YH, Zeng ZM, Chuang SM. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater 2014; 264: 303-312.
68.
Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz- Pawlak A, Nowaczyk G, Zaleska-Medynska A, et al. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med 2019; 30: 22. DOI: 10.1007/s10856-019-6221-2.
69.
Vijayakumar S, Ganesan S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater 2012; 2012. DOI: https://doi.org/10.1155/2012/734398.
70.
Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G, et al. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fibre Toxicol 2009; 6: 18. DOI: 10.1186/1743-8977-6-18.
71.
Bhamidipati M, Fabris L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry. Bioconjugate Chem 2017; 28: 449-460.
72.
Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliver Rev 2012; 64: 190-199.
73.
Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: size, shape, capping ligand, and biological corona. ACS Omega 2019; 4: 242-256.
74.
Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J Nanomater 2012; 2012. DOI: https://doi.org/10.1155/2012/375496.
75.
Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 2010; 4: 120-137.
76.
Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28: 92. DOI: 10.1007/s10856-017-5902-y.
77.
Vales G, Suhonen S, Siivola KM, Savolainen KM, Catalán J, Norppa H. Genotoxicity and cytotoxicity of gold nanoparticles in vitro: role of surface functionalization and particle size. Nanomaterials (Basel) 2020; 10: 271. DOI: 10.3390/nano10020271.
78.
White BE, White MK, Alsudani ZAN, Watanabe F, Biris AS, Ali N. Cellular uptake of gold nanorods in breast cancer cell lines. Nanomaterials (Basel) 2022; 12: 937. DOI: 10.3390/nano12060937.
79.
Henson JC, Brickell A, Kim JW, Jensen H, Mehta JL, Jensen M, et al. PEGylated gold nanoparticle toxicity in cardiomyocytes: assessment of size, concentration, and time dependency. IEEE Trans Nanobioscience 2022; 21: 387-394.
80.
Wang P, Wu Q, Wang F, Zhang Y, Tong L, Jiang T, et al. Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine (Lond) 2018; 13: 2245-2259.
81.
Yen H, Hsu S, Tsai C. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009; 5: 1553-1561.
82.
Le Guével X, Palomares F, Torres MJ, Blanca M, Fernandez TD, Mayorga C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. Rsc Adv 2015; 5: 85305-85309.
83.
Zupke O, Distler E, Jrchott A, Paiphansiri U, Dass M, Thomas S, et al. Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release. Nanomedicine 2015; 10: 1063-1076.
84.
Zhu GH, Azharuddin M, Islam R, Rahmoune H, Deb S, Kanji U, et al. Innate immune invisible ultrasmall gold nanoparticles – framework for synthesis and evaluation. Acs Appl Mater Inter 2021; 13: 23410-23422.
85.
Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med 2014; 6: 172-178.
86.
Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019; 7: 167. DOI: 10.3389/fchem.2019.00167.