1. Lu X, Li H, Wang S. Hydrogen sulfide protects against uremic accelerated atherosclerosis via nPKCδ/Akt signal path-way. Front Mol Biosci 2021; 7: 1–8.
2.
McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract 2019; 8: 1–11, doi: 10.2147/IPRP.S133088.
3.
Mousa RF, Smesam HN, Qazmooz HA, et al. A pathway phenotype linking metabolic, immune, oxidative, and opioid pathways with comorbid depression, atherosclerosis, and unstable angina. CNS Spectrums 2022; 27(6): 676–690.
4.
Fan G, Liu M, Liu J, et al. Systematic review of the efficacy and safety of Shuxuening injection in the treatment of un-stable angina. Evid Based Complement Alternat Med 2022; 2022: 6650763, doi: 10.1155/2022/6650763.
5.
Mendis S, Thygesen K, Kuulasmaa K, et al. World Health Organization definition of myocardial infarction: 2008–09 revision. Int J Epidemiol 2011; 40(1): 139–146, doi: 10.1093/ije/dyq165.
6.
PouralijanAmiri M, Khoshkam M, Madadi R, et al. NMR-based plasma metabolic profiling in patients with unstable angina. Iran J Basic Med Sci 2020; 23(3): 311–320, doi: 10.22038/IJBMS.2020.39979.9475.
7.
Dugani SB, Moorthy MV, Li C, et al. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women. JAMA Cardiol 2021; 6(4): 437–447.
8.
Deckers JW. Classification of myocardial infarction and unstable angina: a re-assessment. Int J Cardiol 2013; 167(6): 2387–2390.
9.
Qazmooz HA, Smesam HN, Mousa RF, et al. Trace element, immune and opioid biomarkers of unstable angina, in-creased atherogenicity and insulin resistance: Results of machine learning. J Trace Elem Med Biol 2021; 64: 126703, doi: 10.1016/j.jtemb.2020.126703.
10.
El-Gamal F, Alshaikh R, Murshid A, et al. Risk factors of clinical types of Acute Coronary Syndrome. Middle East J Fam Med 2020; 18(1): 156–162, doi: 10.5742/MEWFM.2020.93740.
11.
Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients 2018; 10(11): 1656.
12.
Gil Á, Plaza-Diaz J, Mesa MD. Vitamin D: classic and novel actions. Ann Nutr Metab 2018; 72(2): 87–95, doi: 10.1159/000486536.
13.
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319–329, doi: 10.1016/j.chembiol.2013.12.016.
14.
Collaboration APCS. A comparison of lipid variables as predictors of cardiovascular disease in the Asia Pacific region. Ann Epidemiol 2005; 15(5): 405–413, doi: 10.1016/j.annepidem.2005.01.005.
15.
Fernández-Macías JC, Ochoa-Martínez AC, Varela-Silva JA, et al. Atherogenic index of plasma: novel predictive bi-omarker for cardiovascular illnesses. Arch Med Res 2019; 50(5): 285–294, doi: 10.1016/j.arcmed.2019.08.009.
16.
Abid H, Abid Z, Abid S. Atherogenic indices in clinical practice and biomedical research: a short review. Baghdad J Bio-chem Appl Biol Sci 2021; 2(2): 60–70.
17.
Castelli WP, Abbott RD, McNamara PM. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983; 67(4): 730–734.
18.
Igharo OG, Akinfenwa Y, Alphonsus R, et al. Lipid profile and atherogenic indices in Nigerians occupationally exposed to e-waste: a cardiovascular risk assessment study. Maedica (Bucur) 2020; 15(2): 196–205, doi: 10.26574/maedica.2020.15.2.196
19.
Nair D, Carrigan TP, Curtin RJ, et al. Association of total cholesterol/high‐density lipoprotein cholesterol ratio with proximal coronary atherosclerosis detected by multislice computed tomography. Prev Cardiol 2009; 12(1): 19–26, doi: 10.1111/j.1751-7141.2008.00011.x.
20.
Gómez-Álvarez E, Verdejo J, Ocampo S, et al. The CNIC-polypill improves atherogenic dyslipidemia markers in pa-tients at high risk or with cardiovascular disease: results from a real-world setting in Mexico. Int J Cardiol Heart Vasc 2020: 29: 100545, doi: 10.1016/j.ijcha.2020.100545.
21.
Smesam HN, Qazmooz HA, Khayoon SQ, et al. Pathway phenotypes underpinning depression, anxiety, and chronic fatigue symptoms due to acute rheumatoid arthritis: a precision nomothetic psychiatry analysis. J Pers Med 2022; 12(3): 476, doi: 10.3390/jpm12030476.
22.
Kovacic JC, Muller DW, Graham RM. Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular dis-ease. J Mol Cell Cardiol 2007; 42(1): 19–33, doi: 10.1016/j.yjmcc.2006.10.001.
23.
Choi J. The Role of GM-CSF in Myocardial Infarction [Doctoral dissertation]. Boston (MA): Harvard Medical School; 2019.
24.
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19(1): 31–44, doi: 10.1038/nrm.2017.89.
25.
Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 2018; 19(10): 654–672, doi: 10.1038/s41580-018-0044-8.
26.
Grundy SM, Hansen B, Smith Jr SC, et al. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004; 109(4): 551–556.
27.
Lebovitz H. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 2001: 109(Suppl. 2): S135–S148, doi: 10.1055/s-2001-18576.
28.
Kosmas CE, Bousvarou MD, Kostara CE, et al. Insulin resistance and cardiovascular disease. J Int Med Res 2023; 51(3): 3000605231164548, doi: 10.1177/03000605231164548.
29.
Gast KB, Tjeerdema N, Stijnen T, et al. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLOS ONE 2012; 7(12): e52036.
30.
Ding X, Wang X, Wu J, et al. Triglyceride – glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol 2021; 20(1): 76, doi: 10.1186/s12933-021-01268-9.
31.
Okano T, Sato K, Shirai R, et al. β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques. Int J Endocrinol 2020; 2020: 4139093, doi: 10.1155/2020/4139093.
32.
Campeau L. Letter: Grading of angina pectoris. Circulation 1976; 54(3): 522–523.
33.
Anderson J, Adams C, Antman E, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127(23): e663–e828.
34.
Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Pressure 2013; 22(4): 193–278.
35.
WHO. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consul-tation. 2006. Available from URL: https://iris.who.int/handle/10665/43588.
36.
WHO. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consul-tation. No. WHO/NMH/CHP/CPM/11.1. World Health Organization, 2011. Available from URL: https://iris.who.int/bitstream/handle/10665/70523/WHO_NMH_CHP_CPM_11.1_eng.pdf.
37.
Caruso G, Fresta CG, Grasso M, et al. Inflammation as the Common Biological Link Between Depression and Cardio-vascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27(11): 1782–1800, doi: 10.2174/0929867326666190712091515.
38.
Mizia-Stec K, Zahorska-Markiewicz B, Mandecki T, et al. The selected pro-and anti-inflammatory cytokines in the patients with coronary heart disease: preliminary communication. Pol Arch Med Wewn 1999; 102(2): 677–684.
39.
Anguera I, Miranda-Guardiola F, Bosch X, et al. Elevation of serum levels of the anti-inflammatory cytokine interleu-kin-10 and decreased risk of coronary events in patients with unstable angina. Am Heart J 2002; 144(5): 811–817.
40.
Marchio P, Guerra-Ojeda S, Vila JM, et al. Targeting early atherosclerosis: a focus on oxidative stress and inflamma-tion. Oxid Med Cell Longev 2019; 2019: 8563845, doi: 10.1155/2019/8563845.
41.
Li J-J, Wang H-R, Huang C-X, et al. Enhanced inflammatory response of blood monocytes to C-reactive protein in patients with unstable angina. Clin Chim Acta 2005; 352(1–2): 127–133, doi: 10.1016/j.cccn.2004.08.019.
42.
Luo Y, Jiang D, Wen D, et al. Changes in serum interleukin-6 and high-sensitivity C-reactive protein levels in patients with acute coronary syndrome and their responses to simvastatin. Heart Vessels 2004; 19(6): 257–262, doi: 10.1007/s00380-004-0776-6.
43.
Chen SL, Liu Y, Lin L, et al. Interleukin‐6, but not C‐reactive protein, predicts the occurrence of cardiovascular events after drug‐eluting stent for unstable angina. J Interv Cardiol 2014; 27(2): 142–154, doi: 10.1111/joic.12103.
44.
Garg R, Aggarwal S, Kumar R, et al. Association of atherosclerosis with dyslipidemia and co-morbid conditions: A descriptive study. J Nat Sci Biol Med 2015; 6(1): 163–168, doi: 10.4103/0976-9668.149117.
45.
Sniderman AD, Williams K, Contois JH, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes 2011; 4(3): 337–345, doi: 10.1161/CIRCOUTCOMES.110.959247.
46.
Wengrofsky P, Lee J, Makaryus AN. Dyslipidemia and its role in the pathogenesis of atherosclerotic cardiovascular disease: implications for evaluation and targets for treatment of dyslipidemia based on recent guidelines. In: McFar-lane SI. Dyslipidemia. IntechOpen; 2019. Available from URL: https://www.intechopen.com/chapters/66725.
47.
Cai G, Shi G, Xue S, et al. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine (Baltimore) 2017; 96(37): e8058, doi: 10.1097/MD.0000000000008058.
48.
Liu Y, Feng X, Yang J, et al. The relation between atherogenic index of plasma and cardiovascular outcomes in predia-betic individuals with unstable angina pectoris. BMC Endocr Dis 2023; 23(1): 187, doi: 10.1186/s12902-023-01443-x.
49.
Edwards M, Loprinzi P. The dose-response association between reported moderate to vigorous intensity physical activity and atherogenic index of plasma: NHANES, 1999–2006. J Phys Act Health 2019; 16(5): 368–370, doi: 10.1123/jpah.2016-0389.
50.
Mazidi M, Katsiki N, Mikhailidis DP, et al. Association of ideal cardiovascular health metrics with serum uric acid, in-flammation and atherogenic index of plasma: A population-based survey. Atherosclerosis 2019: 284: 44–49, doi: 10.1016/j.atherosclerosis.2018.09.016.
51.
Kawakami A, Aikawa M, Alcaide P, et al. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 2006; 114(7): 681–687.
52.
Huang Y, Hu Y, Mai W, et al. Plasma oxidized low-density lipoprotein is an independent risk factor in young patients with coronary artery disease. Disease Markers 2011; 31(5): 295–301.
53.
Jia S-J, Niu P-P, Cong J-Z, et al. TLR4 signaling: a potential therapeutic target in ischemic coronary artery disease. Int Immunopharmacol 2014; 23(1): 54–59, doi: 10.1016/j.intimp.2014.08.011.
54.
Wyss CA, Neidhart M, Altwegg L, et al. Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. Eur Heart J 2010; 31(12): 1457–1469.
55.
Justo-Junior A, Villarejos L, Lima X, et al. Monocytes of patients with unstable angina express high levels of chemo-kine and pattern-recognition receptors. Cytokine 2019; 113: 61–67.
56.
Gurses KM, Kocyigit D, Yalcin MU, et al. Enhanced Platelet Toll-like Receptor 2 and 4 Expression in Acute Coronary Syndrome and Stable Angina Pectoris. Am J Cardiol 2015; 116(11): 1666–1671.
57.
Cognasse F, Hamzeh H, Chavarin P, et al. Evidence of Toll‐like receptor molecules on human platelets. Immunol Cell Biol 2005; 83(2): 196–198, doi: 10.1111/j.1440-1711.2005.01314.x.
58.
Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182(12): 7997–8004, doi: 10.4049/jimmunol.0802884.
59.
Netea MG, Nold-Petry CA, Nold MF, et al. Differential requirement for the activation of the inflammasome for pro-cessing and release of IL-1β in monocytes and macrophages. Blood 2009; 113(10): 2324–2335.
60.
Pasini AF, Anselmi M, Garbin U, et al. Enhanced levels of oxidized low-density lipoprotein prime monocytes to cyto-kine overproduction via upregulation of CD14 and toll-like receptor 4 in unstable angina. Arterioscler Thromb Vasc Biol 2007; 27(9): 1991–1997, doi: 10.1161/ATVBAHA.107.142695.
61.
Chávez-Sánchez L, Madrid-Miller A, Chávez-Rueda K, et al. Activation of TLR2 and TLR4 by minimally modified low-density lipoprotein in human macrophages and monocytes triggers the inflammatory response. Hum Immunol 2010; 71(8): 737–744, doi: 10.1016/j.humimm.2010.05.005.
62.
Sato T, Iwabuchi K, Nagaoka I, et al. Induction of human neutrophil chemotaxis by Candida albicans – derived beta-1,6-long glycoside side-chain-branched beta-glucan. J Leukoc Biol 2006; 80(1): 204–211, doi: 10.1189/jlb.0106069.
63.
Iwabuchi K, Prinetti A, Sonnino S, et al. Involvement of very long fatty acid-containing lactosylceramide in lacto-sylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 2008; 25(4): 357–374, doi: 10.1007/s10719-007-9084-6.
64.
Yeh LH, Kinsey AM, Chatterjee S, et al. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J Vasc Res 2001; 38(6): 551–559, doi: 10.1159/000051091.
65.
Pannu R, Won JS, Khan M, et al. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J Neurosci 2004; 24(26): 5942–5954, doi: 10.1523/JNEUROSCI.1271-04.2004.
66.
Shui G, Lam SM, Stebbins J, et al. Polar lipid derangements in type 2 diabetes mellitus: potential pathological rele-vance of fatty acyl heterogeneity in sphingolipids. Metabolomics 2013; 9(4): 786–799, doi: 10.1007/s11306-013-0494-0.
67.
Al-Hakeim HK, Hadi HH, Jawad GA, et al. Intersections between copper, β-arrestin-1, calcium, FBXW7, CD17, insulin resistance and atherogenicity mediate depression and anxiety due to type 2 diabetes mellitus: A nomothetic network approach. J Pers Med 2022; 12(1): 23, doi: 10.3390/jpm12010023.
68.
Nakamura H, Moriyama Y, Watanabe K, et al. Lactosylceramide-Induced Phosphorylation Signaling to Group IVA Phospholipase A2 via Reactive Oxygen Species in Tumor Necrosis Factor-alpha-Treated Cells. J Cell Biochem 2017; 118(12): 4370–4382, doi: 10.1002/jcb.26091.
69.
Alshehry ZH, Mundra PA, Barlow CK, et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Pre-diction of Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation 2016; 134(21): 1637–1650.
70.
Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the Amer-ican Heart Association. Circulation 2011; 123(20): 2292–2333.
71.
Jacob RF, Walter MF, Self-Medlin Y, et al. Atorvastatin active metabolite inhibits oxidative modification of small dense low-density lipoprotein. J Cardiovasc Pharmacol 2013; 62(2): 160–166, doi: 10.1097/FJC.0b013e318294998d.
72.
Qazmooz HA, Smeism HN, Mousa RF, et al. Trace element, immune and opioid biomarkers of unstable angina, in-creased atherogenicity and insulin resistance: results of machine learning. J Trace Elem Med Biol 2021; 64: 126703, doi: 10.1016/j.jtemb.2020.126703.
73.
Sagarad SV, Sukhani N, Machanur B, et al. Effect of Vitamin D on Anginal Episodes in Vitamin D Deficient Patients with Chronic Stable Angina on Medical Management. J Clin Diagn Res 2016; 10(8): OC24–OC26.
74.
Ramadan R, Vaccarino V, Esteves F, et al. Association of vitamin D status with mental stress induced myocardial is-chemia in patients with coronary artery disease. Psychosom Med 2014; 76(7): 569–575, doi: 10.1097/PSY.0000000000000088.
75.
Huang J, Wang Z, Hu Z, et al. Association between blood vitamin D and myocardial infarction: A meta-analysis includ-ing observational studies. Clin Chim Acta 2017; 471: 270–275, doi: 10.1016/j.cca.2017.06.018.
76.
Casseb GA, Ambrósio G, Rodrigues ALS, et al. Levels of 25-hydroxyvitamin D3, biochemical parameters and symp-toms of depression and anxiety in healthy individuals. Metabol Brain Dis 2019; 34(2): 527–535.
77.
Cleland SJ, Petrie JR, Ueda S, et al. Insulin-mediated vasodilation and glucose uptake are functionally linked in hu-mans. Hypertension 1999; 33(1): 554–558.
78.
Al-Karkhi I, Ibrahim AE, Yaseen AK. Levels of insulin, IL-6 and CRP in patients with unstable angina. Adv Clin Exp Med 2013; 22(5): 655–658.
79.
Ogata A, Morishima A, Hirano T, et al. Improvement of HbA1c during treatment with humanised anti-interleukin 6 receptor antibody, tocilizumab. Ann Rheum Dis 2011; 70(6): 1164–1165, doi: 10.1136/ard.2010.132845.
80.
Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obe-sity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280(5): E745–E751, doi: 10.1152/ajpendo.2001.280.5.E745.
81.
Wilbert-Lampen U, Trapp A, Barth S, et al. Effects of beta-endorphin on endothelial/monocytic endothelin-1 and nitric oxide release mediated by mu1-opioid receptors: a potential link between stress and endothelial dysfunction? Endothelium 2007; 14(2): 65–71, doi: 10.1080/10623320701346585.
82.
Tomai F, Crea F, Gaspardone A, et al. Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 1999; 33(7): 1863–1869, doi: 10.1016/s0735-1097(99)00095-9.
83.
He S, Jin S, Yang W, et al. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br J Anaesth 2018; 121(1): 26–37, doi: 10.1016/j.bja.2017.11.110.
84.
Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr Rev 2019; 40(6): 1447–1467, doi: 10.1210/er.2018-00141.
85.
Okano T, Sato K, Shirai R, et al. β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques. Int J Endocrinol 2020; 2020: 4139093, doi: 10.1155/2020/4139093.
86.
Fu L-W, Longhurst JC. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 305(1): H76–H85, doi: 10.1152/ajpheart.00091.2013.
87.
Al-Fadhel SZ, Al-Hakeim HK, Al-Dujaili AH, et al. IL-10 is associated with increased mu-opioid receptor levels in major depressive disorder. Eur Psychiatry 2019; 57: 46–51, doi: 10.1016/j.eurpsy.2018.10.001.
88.
Al-Hakeim HK, Zeki Al-Fadhel S, Al-Dujaili AH, et al. In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr 2020; 32(2): 99–108, doi: 10.1017/neu.2019.47.
89.
Moustafa SR, Al-Rawi KF, Stoyanov D, et al. The Endogenous Opioid System in Schizophrenia and Treatment Re-sistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleu-kin-6. Diagnostics (Basel) 2020; 10(9): 633, doi: 10.3390/diagnostics10090633.
90.
Nunes JPL. Statins and the cholesterol mortality paradox. Scott Med J 2017; 62(1): 19–23, doi: 10.1177/0036933016681913.
91.
Budzyński J, Tojek K, Wustrau B, et al. The “cholesterol paradox” among inpatients – retrospective analysis of medi-cal documentation. Arch Med Sci Atheroscler Dis 2018; 27(3): e46–e57, doi: 10.5114/amsad.2018.74736.
92.
Beckman JA, Paneni F, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 2013; 34(31): 2444–2452, doi: 10.1093/eurheartj/eht142.
93.
Chen L, Sun M, Liu H, et al. Association of plasma apolipoprotein CIII, high sensitivity C-reactive protein and tumor necrosis factor-α contributes to the clinical features of coronary heart disease in Li and Han ethnic groups in China. Lipids Health Dis 2018; 17(1): 176, doi: 10.1186/s12944-018-0830-5.
94.
Lee JH, O’Keefe JH, Bell D, et al. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol 2008; 52(24): 1949–1956, doi: 10.1016/j.jacc.2008.08.050.
95.
Vacek JL, Vanga SR, Good M, et al. Vitamin D deficiency and supplementation and relation to cardiovascular health. Am J Cardiol 2012; 109(3): 359–363, doi: 10.1016/j.amjcard.2011.09.020.
96.
Motiwala SR, Wang TJ. Vitamin D and cardiovascular risk. Curr Hypertens Rep 2012; 14(3): 209–218, doi: 10.1007/s11906-012-0262-y.
97.
Siadat ZD, Kiani K, Sadeghi M, et al. Association of vitamin D deficiency and coronary artery disease with cardiovascu-lar risk factors. J Res Med Sci 2012; 17(11): 1052–1055.