eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2024
vol. 49
 
Share:
Share:
Original paper

Down-regulation of SHP2 promotes neutrophil autophagy and inhibits neutrophil extracellular trap formation to alleviate asthma through the ERK5 pathway

Dandan Shi
1
,
Jian Huang
1
,
Jie Wu
1

  1. Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, China
Cent Eur J Immunol 2024; 49 (3): 252-272
Online publish date: 2024/11/12
Article file
- Down-regulation.pdf  [4.71 MB]
Get citation
 
PlumX metrics:
 
1. Mims JW (2015): Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 Suppl 1: S2-6.
2. Li W, Gao R, Xin T, Gao P (2020): Different expression levels of interleukin-35 in asthma phenotypes. Respir Res 21: 89.
3. Dong H, Yang W, Li W, et al. (2023): New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 14: 1156086.
4. Burn GL, Foti A, Marsman G, et al. (2021): The neutrophil. Immunity 54: 1377-1391.
5. Monteseirín J (2009): Neutrophils and asthma. J Investig Allergol Clin Immunol 19: 340-354.
6. Hosoki K, Ying S, Corrigan C, et al. (2015): Analysis of a panel of 48 cytokines in BAL fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLoS One 2015; 10: e0126035.
7. Hudey SN, Ledford DK, Cardet JC (2020): Mechanisms of non-type 2 asthma. Curr Opin Immunol 66: 123-128.
8. Xia M, Xu F, Ni H, et al. (2022): Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model. Respir Res 23: 289.
9. Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM (2018): Autophagy and inflammation in chronic respiratory disease. Autophagy 14: 221-232.
10. Lv X, Li K, Hu Z (2020): Asthma and autophagy. Adv Exp Med Biol 1207: 581-584.
11. Yang F, Kong J, Zong Y, et al. (2022): Autophagy-related genes are involved in the progression and prognosis of asthma and regulate the immune microenvironment. Front Immunol 13: 897835.
12. Martinez J, Cook DN (2021): What’s the deal with efferocytosis and asthma? Trends Immunol 42: 904-919.
13. Barnes PJ, Baker J, Donnelly LE (2022): Autophagy in asthma and chronic obstructive pulmonary disease. Clin Sci (Lond) 136: 733-746.
14. Yu Y, Sun B (2020): Autophagy-mediated regulation of neutrophils and clinical applications. Burns Trauma 8: tkz001.
15. Qiu Z, Zhou J, Liu F, et al. (2017): Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo. PLoS One 12: e0177334.
16. Yuan L, Liu H, Du X, et al. (2023): Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 151: 431-446.e16.
17. Xia LX, Hua W, Jin Y, et al. (2016): Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2. Cell Death Dis 7: e2175.
18. Chang CJ, Lin CF, Chen BC, et al. (2022): SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 74: 131-142.
19. Ding Y, Ouyang Z, Zhang C, et al. (2020): Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm (2020) 3: e120.
20. Guidelines for bronchial asthma prevent and management (2020 edition) Asthma group of Chinese Throacic Society. Zhonghua Jie He He Hu Xi Za Zhi 43: 1023-1048.
21. Cocchi V, Jávega B, Gasperini S, et al. (2022): 6-(methylsulfonyl) hexyl isothiocyanate: A chemopreventive agent inducing autophagy in leukemia cell lines. Biomolecules 12: 1485.
22. Zhu LM, Zeng D, Lei XC, et al. (2020): KLF2 regulates neutrophil migration by modulating CXCR1 and CXCR2 in asthma. Biochim Biophys Acta Mol Basis Dis 1866: 165920.
23. Deng Z, Sun M, Wu J, et al. (2021): SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 12: 217.
24. Chen Y, Pan X, Zhao J, et al. (2022): Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. Eur J Med Res 27: 204.
25. Mizushima N, Yoshimori T (2007): How to interpret LC3 immunoblotting. Autophagy 3: 542-545.
26. Carrigan SO, Weppler AL, Issekutz AC, Stadnyk AW (2005): Neutrophil differentiated HL-60 cells model Mac-1 (CD11b/CD18)-independent neutrophil transepithelial migration. Immunology 115: 108-117.
27. Ray A, Kolls JK (2017): Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 38: 942-954.
28. Quoc QL, Cao TBT, Kim SH, et al. (2023): Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem Toxicol 175: 113699.
29. Pham DL, Ban GY, Kim SH, et al. (2017): Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy 47: 57-70.
30. Poto R, Shamji M, Marone G, et al. (2022): Neutrophil extracellular traps in asthma: Friends or foes? Cells 11: 3521.
31. Keir HR, Shoemark A, Dicker AJ, et al. (2021): Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med 9: 873-884.
32. Pham DL, Kim SH, Losol P, et al. (2016): Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma. Korean J Intern Med 31: 375-385.
33. Araya J, Kojima J, Takasaka N, et al. (2013): Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 304: L56-69.
34. Junkins RD, Shen A, Rosen K, et al. (2013): Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 8: e72263.
35. Li GN, Zhao XJ, Wang Z, et al. (2022): Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther 7: 317.
36. Xu X, Li Y, Xu R, et al. (2024): CD74-ROS1 L2026M mutant enhances autophagy through the MEK/ERK pathway to promote invasion, metastasis and crizotinib resistance in non-small cell lung cancer cells. Febs J 291: 1199-1219.
37. Karampitsakos T, Galaris A, Barbayianni I, et al. (2023): SH2 Domain-containing phosphatase-SHP2 attenuates fibrotic responses through negative regulation of mitochondrial metabolism in lung fibroblasts. Diagnostics (Basel) 13: 1166.
38. Cai J, Wang Q, Tan S, et al. (2024): Plasma-derived exosomal protein SHP2 deficiency induces neutrophil hyperactivation in Behcet’s uveitis. Exp Eye Res 239: 109785.
39. Carmona-Rivera C, Purmalek MM, Moore E, et al. (2017): A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI Insight 2: e89780.
40. Park HB, Baek KH (2022): E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 1877: 188736.
41. El-Deeb AM, Mohamed AF, El-Yamany MF, El-Tanbouly DM (2023): Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 380: 110562.
Copyright: © 2024 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.