1. Mims JW (2015): Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 Suppl 1: S2-6.
2.
Li W, Gao R, Xin T, Gao P (2020): Different expression levels of interleukin-35 in asthma phenotypes. Respir Res 21: 89.
3.
Dong H, Yang W, Li W, et al. (2023): New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 14: 1156086.
4.
Burn GL, Foti A, Marsman G, et al. (2021): The neutrophil. Immunity 54: 1377-1391.
5.
Monteseirín J (2009): Neutrophils and asthma. J Investig Allergol Clin Immunol 19: 340-354.
6.
Hosoki K, Ying S, Corrigan C, et al. (2015): Analysis of a panel of 48 cytokines in BAL fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLoS One 2015; 10: e0126035.
7.
Hudey SN, Ledford DK, Cardet JC (2020): Mechanisms of non-type 2 asthma. Curr Opin Immunol 66: 123-128.
8.
Xia M, Xu F, Ni H, et al. (2022): Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model. Respir Res 23: 289.
9.
Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM (2018): Autophagy and inflammation in chronic respiratory disease. Autophagy 14: 221-232.
10.
Lv X, Li K, Hu Z (2020): Asthma and autophagy. Adv Exp Med Biol 1207: 581-584.
11.
Yang F, Kong J, Zong Y, et al. (2022): Autophagy-related genes are involved in the progression and prognosis of asthma and regulate the immune microenvironment. Front Immunol 13: 897835.
12.
Martinez J, Cook DN (2021): What’s the deal with efferocytosis and asthma? Trends Immunol 42: 904-919.
13.
Barnes PJ, Baker J, Donnelly LE (2022): Autophagy in asthma and chronic obstructive pulmonary disease. Clin Sci (Lond) 136: 733-746.
14.
Yu Y, Sun B (2020): Autophagy-mediated regulation of neutrophils and clinical applications. Burns Trauma 8: tkz001.
15.
Qiu Z, Zhou J, Liu F, et al. (2017): Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo. PLoS One 12: e0177334.
16.
Yuan L, Liu H, Du X, et al. (2023): Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 151: 431-446.e16.
17.
Xia LX, Hua W, Jin Y, et al. (2016): Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2. Cell Death Dis 7: e2175.
18.
Chang CJ, Lin CF, Chen BC, et al. (2022): SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 74: 131-142.
19.
Ding Y, Ouyang Z, Zhang C, et al. (2020): Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm (2020) 3: e120.
20.
Guidelines for bronchial asthma prevent and management (2020 edition) Asthma group of Chinese Throacic Society. Zhonghua Jie He He Hu Xi Za Zhi 43: 1023-1048.
21.
Cocchi V, Jávega B, Gasperini S, et al. (2022): 6-(methylsulfonyl) hexyl isothiocyanate: A chemopreventive agent inducing autophagy in leukemia cell lines. Biomolecules 12: 1485.
22.
Zhu LM, Zeng D, Lei XC, et al. (2020): KLF2 regulates neutrophil migration by modulating CXCR1 and CXCR2 in asthma. Biochim Biophys Acta Mol Basis Dis 1866: 165920.
23.
Deng Z, Sun M, Wu J, et al. (2021): SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 12: 217.
24.
Chen Y, Pan X, Zhao J, et al. (2022): Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. Eur J Med Res 27: 204.
25.
Mizushima N, Yoshimori T (2007): How to interpret LC3 immunoblotting. Autophagy 3: 542-545.
26.
Carrigan SO, Weppler AL, Issekutz AC, Stadnyk AW (2005): Neutrophil differentiated HL-60 cells model Mac-1 (CD11b/CD18)-independent neutrophil transepithelial migration. Immunology 115: 108-117.
27.
Ray A, Kolls JK (2017): Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 38: 942-954.
28.
Quoc QL, Cao TBT, Kim SH, et al. (2023): Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem Toxicol 175: 113699.
29.
Pham DL, Ban GY, Kim SH, et al. (2017): Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy 47: 57-70.
30.
Poto R, Shamji M, Marone G, et al. (2022): Neutrophil extracellular traps in asthma: Friends or foes? Cells 11: 3521.
31.
Keir HR, Shoemark A, Dicker AJ, et al. (2021): Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med 9: 873-884.
32.
Pham DL, Kim SH, Losol P, et al. (2016): Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma. Korean J Intern Med 31: 375-385.
33.
Araya J, Kojima J, Takasaka N, et al. (2013): Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 304: L56-69.
34.
Junkins RD, Shen A, Rosen K, et al. (2013): Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 8: e72263.
35.
Li GN, Zhao XJ, Wang Z, et al. (2022): Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther 7: 317.
36.
Xu X, Li Y, Xu R, et al. (2024): CD74-ROS1 L2026M mutant enhances autophagy through the MEK/ERK pathway to promote invasion, metastasis and crizotinib resistance in non-small cell lung cancer cells. Febs J 291: 1199-1219.
37.
Karampitsakos T, Galaris A, Barbayianni I, et al. (2023): SH2 Domain-containing phosphatase-SHP2 attenuates fibrotic responses through negative regulation of mitochondrial metabolism in lung fibroblasts. Diagnostics (Basel) 13: 1166.
38.
Cai J, Wang Q, Tan S, et al. (2024): Plasma-derived exosomal protein SHP2 deficiency induces neutrophil hyperactivation in Behcet’s uveitis. Exp Eye Res 239: 109785.
39.
Carmona-Rivera C, Purmalek MM, Moore E, et al. (2017): A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI Insight 2: e89780.
40.
Park HB, Baek KH (2022): E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 1877: 188736.
41.
El-Deeb AM, Mohamed AF, El-Yamany MF, El-Tanbouly DM (2023): Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 380: 110562.