1. Agnihotri TG, Alexander A, Agrawal M, Dubey SK, Jain A. In vitro-in vivo correlation in nanocarriers: From protein corona to therapeutic implications. J Control Release 2023; 354: 794-809.
2.
Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta 2010; 411: 1841-1848.
3.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3: 279-290.
4.
Cameron SJ, Hosseinian F, Willmore WG. A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci 2018; 19: 2030.
5.
Casetta I, Govoni V, Granieri E. Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Des 2005; 11: 2033-2052.
6.
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 2010; 28: 580-588.
7.
Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008; 176: 1-12.
8.
Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 2008; 17: 326-343.
9.
Cortese-Krott MM, Munchow M, Pirev E, Hessner F, Bozkurt A, Uciechowski P, Pallua N, Kroncke KD, Suschek CV. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic Biol Med 2009; 47: 1570-1577.
10.
Costa CS, Ronconi JV, Daufenbach JF, Goncalves CL, Rezin GT, Streck EL, Paula MM. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 2010; 342: 51-56.
11.
Dabrowska-Bouta B, Sulkowski G, Struzynski W, Struzynska L. Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin. Neurotox Res 2019; 35: 495-504.
12.
Dabrowska-Bouta B, Sulkowski G, Salek M, Gewartowska M, Sidoryk-Wegrzynowicz M, Struzynska L. Early postnatal exposure to a low dose of nanoparticulate silver induces alterations in glutamate transporters in brain of immature rats. Int J Mol Sci 2020; 21: 8977.
13.
Dabrowska-Bouta B, Sulkowski G, Gewartowska M, Struzynska L. Endoplasmic reticulum stress underlies nanosilver-induced neurotoxicity in immature rat brain. Int J Mol Sci 2022; 23: 13013.
14.
de Macedo EF, Santos NS, Nascimento LS, Mathey R, Brenet S, de Moura MS, Hou Y, Tada DB. Interaction between nanoparticles, membranes and proteins: a surface plasmon resonance study. Int J Mol Sci 2022; 24: 591.
15.
Duran N, Silveira CP, Duran M, Martinez DS. Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnology 2015; 13: 55.
16.
Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013; 62: 4-12.
17.
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 2009; 190: 156-162.
18.
Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Oxidative Stress and Free Radical Damage in Neurology. Gadoth N, Göbel H (eds.). Springer 2011; 19-27.
19.
Glorieux C, Calderon PB. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 2017; 398: 1095-1108.
20.
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 2011; 7: 347-354.
21.
Haase A, Rott S, Mantion A, Graf P, Plendl J, Thunemann AF, Meier WP, Taubert A, Luch A, Reiser G. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 2012; 126: 457-468.
22.
Hazarika A, Yadav M, Yadav DK, Yadav HS. An overview of the role of nanoparticles in sustainable agriculture. Biocatal Agr Biotech 2022; 43: 102399.
23.
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic reticulum stress provocation by different nanoparticles: an innovative approach to manage the cancer and other common diseases. Molecules 2020; 25: 5336.
24.
Khan H, Khan MF, Asim ur R, Jan SU, Ullah N. The protective role of glutathione in silver induced toxicity in blood components. Pak J Pharm Sci 2011; 24: 123-128.
25.
Krezel A, Bal W. Studies of zinc(II) and nickel(II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorg Chem Appl 2004; 2: 293-305.
26.
Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005; 6: 17-33.
27.
Langie SA, Knaapen AM, Houben JM, van Kempen FC, de Hoon JP, Gottschalk RW, Godschalk RW, van Schooten FJ. The role of glutathione in the regulation of nucleotide excision repair during oxidative stress. Toxicol Lett 2007; 168: 302-309.
28.
Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE, De Jong WH. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010; 31: 8350-8361.
29.
Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep 2020; 10: 1129.
30.
Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 2010; 44: 2169-2175.
31.
Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 2011; 8: 18.
32.
Maity A, De SK, Chakraborty A. Interaction of Aromatic amino acid-functionalized gold nanoparticles with lipid bilayers: insight into the emergence of novel lipid corona formation.
33.
J Phys Chem B 2021; 125: 2113-2123.
34.
Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47: 344-356.
35.
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008; 10: 1941-1988.
36.
Nguyen VH, Lee BJ. Protein corona: a new approach for nanomedicine design. Int J Nanomedicine 2017; 12: 3137-3151.
37.
Pan H, Qin M, Meng W, Cao Y, Wang W. How do proteins unfold upon adsorption on nanoparticle surfaces? Langmuir 2012; 28: 12779-12787.
38.
Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 2010; 24: 872-878.
39.
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011; 201: 92-100.
40.
Pudlarz AM, Czechowska E, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J. Immobilization of recombinant human catalase on gold and silver nanoparticles. Appl Biochem Biotechnol 2018; 185: 717-735.
41.
Pudlarz AM, Ranoszek-Soliwoda K, Karbownik MS, Czechowska E, Tomaszewska E, Celichowski G, Grobelny J, Chabielska E, Gromotowicz-Poplawska A, Szemraj J. Antioxidant enzymes immobilized on gold and silver nanoparticles enhance DNA repairing systems of rat skin after exposure to ultraviolet radiation. Nanomedicine 2022; 43: 102558.
42.
Roy T, Dey SK, Pradhan A, Chaudhuri AD, Dolai M, Mandal SM, Choudhury SM. Facile and green fabrication of highly competent surface-modified chlorogenic acid silver nanoparticles: characterization and antioxidant and cancer chemopreventive potential. ACS Omega 2022; 7: 48018-48033.
43.
Rungby J, Danscher G. Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathol 1983; 60: 92-98.
44.
Sahu S, Ghosh KK. Selective detection of tartaric acid using amino acid interlinked silver nanoparticles as a colorimetric probe. Anal Methods 2022; 14: 3323-3334.
45.
Schousboe A, Drejer J, Hansen GH, Meier E. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids. Dev Neurosci 1985; 7: 252-262.
46.
Skalska J, Dabrowska-Bouta B, Struzynska L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol 2016; 97: 307-315.
47.
Struzynska L, Skalska J. Mechanisms underlying neurotoxicity of silver nanoparticles. Adv Exp Med Biol 2018; 1048: 227-250.
48.
Struzynska L, Dabrowska-Bouta B, Sulkowski G. Developmental neurotoxicity of silver nanoparticles: the current state of knowledge and future directions. Nanotoxicology 2022: 1-26.
49.
Struzynski W, Dabrowska-Bouta B, Grygorowicz T, Zieminska E, Struzynska L. Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, raf) experimentally exposed to nanosilver. Environ Toxicol 2014; 29: 1283-1291.
50.
Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 2013; 9: 1831-1841.
51.
Zieminska E, Stafiej A, Struzynska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology 2014; 315: 38-48.
52.
Zieminska E, Struzynska L. Zinc modulates nanosilver-induced toxicity in primary neuronal cultures. Neurotox Res 2016; 29: 325-343.