eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2024
vol. 62
 
Share:
Share:
Original paper

Glial fibrillary acidic protein and S100b protein immunoreactivity in the hippocampus of weaning rats from dams treated with acrylamide during pregnancy

Karol Rycerz
1
,
Aleksandra E. Krawczyk
1
,
Jadwiga Jaworska-Adamu
1
,
Ewa Tomaszewska
2
,
Siemowit Muszyński
3
,
Piotr Dobrowolski
4
,
Marcin Arciszewski
1

  1. Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
  2. Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
  3. Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Lublin, Poland
  4. Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
Folia Neuropathol 2024; 62 (3): 259-269
Online publish date: 2024/10/09
Article file
- Glial.pdf  [0.25 MB]
Get citation
 
PlumX metrics:
 
1. Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci 2017; 24: 101-105.
2. Attoff K, Gliga A, Lundqvist J, Norinder U, Forsby A. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity. PLoS One 2017; 12: e0190066.
3. Becalski A, Brady B, Feng S, Gauthier BR, Zhao T. Formation of acrylamide at temperatures lower than 100°C: the case of prunes and a model study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28: 726-730.
4. Chen JH, Chou CC. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem Toxicol 2015; 82: 27-35.
5. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 2003; 60: 540-551.
6. EFSA, EFSA Panel on Contaminants in the Food Chain (CONTAM), Scientific Opinion on acrylamide in food. EFSA J 2015; 113: 1-321.
7. El Falougy H, Kubikova E, Benuska J. The microscopical structure of the hippocampus in the rat. Bratisl Lek Listy 2008; 109: 106-110.
8. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 2000; 25: 1439-1451.
9. Erdemli ME, Arif Aladag M, Altinoz E, Demirtas S, Turkoz Y, Yigitcan B, Bag HG. Acrylamide applied during pregnancy causes the neurotoxic effect by lowering BDNF levels in the fetal brain. Neurotoxicol Teratol 2018; 67: 37-43.
10. Erdemli ME, Turkoz Y, Altinoz E, Elibol E, Dogan Z. Investigation of the effects of acrylamide applied during pregnancy on fetal brain development in rats and protective role of the vitamin E. Hum Exp Toxicol 2016; 35: 1337-1344.
11. Farouk SM, Gad FA, Almeer R, Abdel-Daim MM, Emam MA. Exploring the possible neuroprotective and antioxidant potency of lycopene against acrylamide-induced neurotoxicity in rats’ brain. Biomed Pharmacother 2021; 138: 111458.
12. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 2002; 43: 244-258.
13. Halle I, Ihling M, Lahrssen-Wiederholt M, Klaffke H, Flachowsky G. Carry-over of acrylamide from feed (heated potato product) to eggs and body tissues of laying hens. J Verbr Lebensm 2006; 1: 290-293.
14. Hostenbach S, Cambron M, D’haeseleer M, Kooijman R, De Keyser J. Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett 2014; 565: 39-41.
15. Imam RA, Gadallah HN. Acrylamide-induced adverse cerebellar changes in rats: possible oligodendrogenic effect of omega 3 and green tea. Folia Morphol (Warsz) 2019; 78: 564-574.
16. Jaworska-Adamu J, Krawczyk A, Rycerz K, Krawczyk-Marć I. Age-related astrocytic changes in the periaqueductal gray matter (PAG) in rats. Med Weter 2014; 70: 589-593.
17. Kienzle E, Ranz D, Thielen C, Jezussek M, Schieberle P. Carry over (transfer) of feed-borne acrylamide into eggs, muscle, serum, and faeces – a pilot study with Japanese quails (Coturnix coturnix japonica). J Anim Physiol Anim Nutr (Berl) 2005; 89: 79-83.
18. Kirschen GW, Kéry R, Ge S. The hippocampal neuro-glio-vascular network: Metabolic vulnerability and potential neurogenic regeneration in disease. Brain Plast 2018; 3: 129-144.
19. Krawczyk A, Jaworska-Adamu J, Rycerz K. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment. Pol J Vet Sci 2015; 18: 767-774.
20. Langeh U, Singh S. Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol 2021; 19: 265-277.
21. Lee S, Park HR, Lee JY, Cho JH, Song HM, Kim AH, Lee W, Lee Y, Chang SC, Kim HS, Lee J. Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide. J Toxicol Environ Health A 2018; 81: 254-265.
22. Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M. Intermediate filaments regulate astrocyte motility. J Neurochem 2001; 79: 617-625.
23. Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101: 93-114.
24. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol 2011; 93: 421-443.
25. Muszyński S, Hułas-Stasiak M, Dobrowolski P, Arciszewski MB, Hiżewska H, Donaldson J, Mozel S, Rycerz K, Kapica M, Puzio I, Tomaszewska E. Maternal acrylamide exposure changes intestinal epithelium, immunolocalization of leptin and ghrelin and their receptors, and gut barrier in weaned offspring. Scient Rep 2023; 13: 10286.
26. Nagata C, Konishi K, Wada K, Tamura T, Goto Y, Koda S, Mizuta F, Iwasa S. Maternal acrylamide intake during pregnancy and sex hormone levels in maternal and umbilical cord blood and birth size of offspring. Nutr Cancer 2019; 71: 77-82.
27. Ogawa B, Wang L, Ohishi T, Taniai E, Akane H, Suzuki K, Mitsumori K, Shibutani M. Reversible aberration of neurogenesis targeting late-stage progenitor cells in the hippocampal dentate gyrus of rat offspring after maternal exposure to acrylamide. Arch Toxicol 2012; 86: 779-790.
28. Pabst K, Mathar W, Palavinskas R, Meisel H, Blüthgen A, Klaffke H. Acrylamide-occurrence in mixed concentrate feed for dairy cows and carry-over into milk. Food Addit Contam 2005; 22: 210-213.
29. Peng L, Bonaguidi MA. Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am J Pathol 2018; 188: 23-28.
30. Romani A, Schürmann F, Markram H, Migliore M. Reconstruction of the hippocampus. Adv Exp Med Biol 2022; 1359: 261-283.
31. Schettgen T, Kütting B, Hornig M, Beckmann MW, Weiss T, Drexler H, Angerer J. Trans-placental exposure of neonates to acrylamide – a pilot study. Int Arch Occup Environ Health 2004; 77: 213-216.
32. Shi J, Ma Y, Zheng M, Ruan Z, Liu J, Tian S, Zhang D, He X, Li G. Effect of sub-acute exposure to acrylamide on GABAergic neurons and astrocytes in weaning rat cerebellum. Toxicol Ind Health 2012; 28: 10-20.
33. Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1: 1-8.
34. Takahashi M, Shibutani M, Inoue K, Fujimoto H, Hirose M, Nishikawa A. Pathological assessment of the nervous and male reproductive systems of rat offspring exposed maternally to acrylamide during the gestation and lactation periods – a preliminary study. J Toxicol Sci 2008; 33: 11-24.
35. Tian SM, Ma YX, Shi J, Lou TY, Liu SS, Li GY. Acrylamide neurotoxicity on the cerebrum of weaning rats. Neural Regen Res 2015; 10: 938-943.
36. Vaccarino FM, Ment LR. Injury and repair in developing brain. Arch Dis Child Fetal Neonatal Ed 2004; 89: F190-F192.
37. Wang P, Qin D, Wang YF. Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A. Front Mol Neurosci 2017; 10: 1-14.
38. Wilhelmsson U, Pozo-Rodrigalvarez A, Kalm M, de Pablo Y, Widestrand Å, Pekna M, Pekny M. The role of GFAP and vimentin in learning and memory. Biol Chem 2019; 400: 1147-1156.
39. Xiao J, Niu K, Meng H, Cui T, Li Z, Li B. Effects of calcium way of Schwann cells on damage of peripheral nerve induced by acrylamide. Wei Sheng Yan Jiu 2009; 38: 641-644.
40. Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S. Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 2004; 1021: 20-31.
41. Zong C, Hasegawa R, Urushitani M, Zhang L, Nagashima D, Sakurai T, Ichihara S, Ohsako S, Ichihara G. Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Arch Toxicol 2019; 93: 2007-2019.
Copyright: © 2024 Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.