eISSN: 1509-572x
ISSN: 1641-4640
Folia Neuropathologica
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
1/2016
vol. 54
 
Share:
Share:
abstract:
Original paper

Histopathological comparison of Kearns-Sayre syndrome and PGC-1α-deficient mice suggests a novel concept for vacuole formation in mitochondrial encephalopathy

Levente Szalardy
,
Mate Molnar
,
Rita Torok
,
Denes Zadori
,
Laszlo Vecsei
,
Peter Klivenyi
,
Paweł Piotr Liberski
,
Gabor Geza Kovacs

Folia Neuropathol 2016; 54 (1): 9-22
Online publish date: 2016/03/31
View full text Get citation
 
PlumX metrics:
Despite the current hypotheses about myelinic and astrocytic ion-dyshomeostasis underlying white (WM) and grey matter (GM) vacuolation in mitochondrial encephalopathies, there is a paucity of data on the exact mechanism of vacuole formation. To revisit the concepts of vacuole formation associated with mitochondrial dysfunction, we performed a comparative neuropathological analysis in Kearns-Sayre syndrome (KSS) and full-length peroxisome proliferator-activated receptor-g coactivator-1a (FL-PGC-1a)-deficient mice, a recently proposed morphological model of mitochondrial encephalopathies. Brain tissues from an individual with genetically proven KSS (22-year-old man) and aged FL-PGC-1a-deficient and wild-type (male, 70-75-week-old) mice were analysed using ultrastructural and immunohistochemical methods, with a specific focus on myelin-related, oligodendroglial, axonal and astrocytic pathologies. Besides demonstrating remarkable similarities in the lesion profile of KSS and FL-PGC-1a-deficient mice, this study first provides morphological evidence for the identical origin of WM and GM vacuolation as well as for the presence of intracytoplasmic oligodendroglial vacuoles in mitochondriopathies. Based on these observations, the paper proposes a theoretical model for the development of focal myelin vacuolation as opposed to the original concepts of intramyelin oedema. Placing oligodendrocytes in the centre of tissue lesioning in conditions related to defects in mitochondria, our observations support the rationale for cytoprotective targeting of oligodendrocytes in mitochondrial encephalopathies, and may also have implications in brain aging and multiple sclerosis, as discussed.
keywords:

Kearns-Sayre syndrome, PGC-1α, mitochondrial encephalopathy, vacuole, myelin, oligodendrocyte

Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.