eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2024
vol. 49
 
Share:
Share:
Original paper

Immune regulation is more effective in the U937 inflammation model with mesenchymal stem cell extracellular vesicles stimulated by pro-inflammatory cytokines

Canan Öztürk
1
,
Zehra S. Halbutoğullari
1, 2, 3

  1. Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli,
  2. Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
  3. Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
Cent Eur J Immunol 2024; 49 (3): 282-299
Online publish date: 2024/11/12
Article file
- Immune regulation (1).pdf  [10.67 MB]
Get citation
 
PlumX metrics:
 
1. Ciavarella S, Dominici M, Dammacco F, Silvestris F (2011): Mesenchymal stem cells: a new promise in anticancer therapy. Stem Cells Dev 20: 1-10.
2. Tian LL, Yue W, Zhu F, et al. (2011): Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226: 1860-1867.
3. Watson N, Divers R, Kedar R, et al. (2015): Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17: 18-24.
4. Rady D, Abbass MMS, El-Rashidy AA, et al. (2020): Mesenchymal stem/progenitor cells: The prospect of human clinical translation. Stem Cells Int 2020: 8837654.
5. Zhao L, Chen S, Yang P, et al. (2019): The role of mesenchymal stem cells in hematopoietic stem cell transplantation: Prevention and treatment of graft-versus-host disease. Stem Cell Res Ther 10: 182.
6. Raza SS, Seth P, Khan MA (2021): ‘Primed’ mesenchymal stem cells: a potential novel therapeutic for COVID19 patients. Stem Cell Rev Rep 17: 153-162.
7. Théry C, Witwer KW, Aikawa E, et al. (2018): Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7: 1535750.
8. Pegtel DM, Gould SJ (2019): Exosomes. Annu Rev Biochem 88: 487-514.
9. Cheng Y, Qu X, Dong Z, et al. (2020): Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ 8: e9434.
10. De Sousa KP, Rossi I, Abdullahi M, et al. (2023): Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 15: e1835.
11. Kalra H, Drummen GP, Mathivanan S (2016): Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci 17: 170.
12. Johnsen KB, Gudbergsson JM, Skov MN, et al. (2014): A comprehensive overview of exosomes as drug delivery vehicles – endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846: 75-87.
13. Kalluri R (2016): The biology and function of exosomes in cancer. J Clin Invest 126: 1208-1215.
14. Jiang XC, Gao JQ (2017): Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521: 167-175.
15. Hessvik NP, Llorente A (2018): Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75: 193-208.
16. Kumar S, Michael IJ, Park J, et al. (2018): Cloaked exosomes: Biocompatible, durable, and degradable encapsulation. Small 14: e1802052.
17. Valadi H, Ekström K, Bossios A, et al. (2007): Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654-659.
18. Zomer A, Vendrig T, Hopmans ES, et al. (2010): Exosomes: Fit to deliver small RNA. Commun Integr Biol 3: 447-450.
19. Reza AMMT, Choi YJ, Yasuda H, Kim JH (2016): Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 6: 38498.
20. McDonald MK, Tian Y, Qureshi RA, et al. (2014): Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155: 1527-1539.
21. Hamidzadeh K, Christensen SM, Dalby E, et al. (2017): Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79: 567-592.
22. Das A, Sinha M, Datta S, et al. (2015): Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 185: 2596-2606.
23. Willenborg S, Lucas T, van Loo G, et al. (2012): CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613-625.
24. Labonte AC, Tosello-Trampont AC, Hahn YS (2014): The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 37: 275-285.
25. Yunna C, Mengru H, Lei W, Weidong C (2020): Macrophage M1/M2 polarization. Eur J Pharmacol 877: 173090.
26. Chabot S, Charlet D, Wilson TL, Yong VW (2001): Cytokine production consequent to T cell--microglia interaction: the PMA/IFN gamma-treated U937 cells display similarities to human microglia. J Neurosci Methods 105: 111-120.
27. Xie C, Liu C, Wu B, et al. (2016): Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med 38: 148-160.
28. Daigneault M, Preston JA, Marriott HM, et al. (2010): The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5: e8668.
29. Chen Q, Ross AC (2004): Retinoic acid regulates cell cycle progression and cell differentiation in human monocytic THP-1 cells. Exp Cell Res 297: 68-81.
30. Dong Q, Li Y, Chen J, Wang N (2020): Azilsartan suppressed LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR2/MyD88 signal pathway. ACS Omega 6: 113-118.
31. Kuno S, Srinoun K, Penglong T (2020): The effects of Phorbol 12-myristate 13-acetate concentration on the expression of miR-155 and miR-125b and their macrophage function-related genes in the U937 cell line. J Toxicol Sci 45: 751-761.
32. Pinto SM, Kim H, Subbannayya Y, et al. (2021): Comparative proteomic analysis reveals varying impact on immune responses in phorbol 12-myristate-13-acetate-mediated THP-1 monocyte-to-macrophage differentiation. Front Immunol 12: 679458.
33. Sproston NR, El Mohtadi M, Slevin M, et al. (2018): The effect of C-reactive protein isoforms on nitric oxide production by U937 monocytes/macrophages. Front Immunol 9: 1500.
34. Yasuda T (2011): Hyaluronan inhibits Akt, leading to nuclear factor-κB down-regulation in lipopolysaccharide-stimulated U937 macrophages. J Pharmacol Sci 115: 509-515.
35. Bernardo ME, Fibbe WE (2013): Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392-402.
36. López-García L, Castro-Manrreza ME (2021): TNF-α and IFN-γ participate in improving the immunoregulatory capacity of mesenchymal stem/stromal cells: Importance of cell-cell contact and extracellular vesicles. Int J Mol Sci 22: 9531.
37. Gurunathan S, Kang MH, Kim JH (2021): A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine 16: 1281-1312.
38. Mohammadpour H, Pourfathollah AA, Nikougoftar Zarif M, Hashemi SM (2016): Increasing proliferation of murine adipose tissue-derived mesenchymal stem cells by TNF-α plus IFNγ. Immunopharmacol Immunotoxicol 38: 68-76.
39. Ferreira JR, Teixeira GQ, Neto E, et al. (2021): IL-1β-pre-conditioned mesenchymal stem/stromal cells’ secretome modulates the inflammatory response and aggrecan deposition in intervertebral disc. Eur Cell Mater 41: 431-453.
40. Dominici M, Le Blanc K, Mueller I, et al. (2006): Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
41. Demirayak B, Yüksel N, Çelik OS, et al. (2016): Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Exp Eye Res 151: 227-235.
42. Vural B, Duruksu G, Vural F, et al. (2019): Effects of VEGF+ mesenchymal stem cells and platelet-rich plasma on inbred rat ovarian functions in cyclophosphamide-induced premature ovarian insufficiency model. Stem Cell Rev Rep 15: 558-573.
43. Shaddox LM, Gonçalves PF, Vovk A, et al. (2013): LPS-induced inflammatory response after therapy of aggressive periodontitis. J Dent Res 92: 702-708.
44. Jafarinia M, Alsahebfosoul F, Salehi H, et al. (2020): Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy. Immunol Invest 49: 758-780.
45. Cheng Y, Cao X, Qin L (2020): Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy for sepsis. Front Immunol 11: 647.
46. Kou M, Huang L, Yang J, et al. (2022): Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 13: 580.
47. Dal Collo G, Adamo A, Gatti A, et al. (2020): Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells 38: 698-711.
48. Lo Sicco C, Reverberi D, Balbi C, et al. (2017): Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl Med 6: 1018-1028.
49. Liu L, Guo H, Song A, et al. (2020): Progranulin inhibits LPS-induced macrophage M1 polarization via NF-kB and MAPK pathways. BMC Immunol 21: 32.
50. Cutolo M, Soldano S, Gotelli E, et al. (2021): CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res Ther 23: 306.
51. Przybyla B, Gurley C, Harvey JF, et al. (2006): Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 41: 320-327.
52. Sorensen JR, Kaluhiokalani JP, Hafen PS, et al. (2019): An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair. FASEB J 33: 10353-10368.
53. Szittner Z, Papp K, Sándor N, et al. (2013): Application of fluorescent monocytes for probing immune complexes on antigen microarrays. PLoS One 8: e72401.
54. Brosseau C, Colas L, Magnan A, Brouard S (2018): CD9 tetraspanin: A new pathway for the regulation of inflammation? Front Immunol 9: 2316.
55. Akuthota P, Melo RC, Spencer LA, Weller PF (2012): MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains. Am J Respir Cell Mol Biol 46: 188-195.
56. Wang XQ, Evans GF, Alfaro ML, Zuckerman SH (2002): Down-regulation of macrophage CD9 expression by interferon-gamma. Biochem Biophys Res Commun 290: 891-897.
57. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010): Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5: e9016.
58. Yu Y, Yoo SM, Park HH, et al. (2019): Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis. J Tissue Eng Regen Med 13: 1792-1804.
59. Liang X, Ding Y, Zhang Y, et al. (2014): Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23: 1045-1059.
Copyright: © 2024 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.