1. Ciavarella S, Dominici M, Dammacco F, Silvestris F (2011): Mesenchymal stem cells: a new promise in anticancer therapy. Stem Cells Dev 20: 1-10.
2.
Tian LL, Yue W, Zhu F, et al. (2011): Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226: 1860-1867.
3.
Watson N, Divers R, Kedar R, et al. (2015): Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17: 18-24.
4.
Rady D, Abbass MMS, El-Rashidy AA, et al. (2020): Mesenchymal stem/progenitor cells: The prospect of human clinical translation. Stem Cells Int 2020: 8837654.
5.
Zhao L, Chen S, Yang P, et al. (2019): The role of mesenchymal stem cells in hematopoietic stem cell transplantation: Prevention and treatment of graft-versus-host disease. Stem Cell Res Ther 10: 182.
6.
Raza SS, Seth P, Khan MA (2021): ‘Primed’ mesenchymal stem cells: a potential novel therapeutic for COVID19 patients. Stem Cell Rev Rep 17: 153-162.
7.
Théry C, Witwer KW, Aikawa E, et al. (2018): Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7: 1535750.
8.
Pegtel DM, Gould SJ (2019): Exosomes. Annu Rev Biochem 88: 487-514.
9.
Cheng Y, Qu X, Dong Z, et al. (2020): Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ 8: e9434.
10.
De Sousa KP, Rossi I, Abdullahi M, et al. (2023): Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 15: e1835.
11.
Kalra H, Drummen GP, Mathivanan S (2016): Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci 17: 170.
12.
Johnsen KB, Gudbergsson JM, Skov MN, et al. (2014): A comprehensive overview of exosomes as drug delivery vehicles – endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846: 75-87.
13.
Kalluri R (2016): The biology and function of exosomes in cancer. J Clin Invest 126: 1208-1215.
14.
Jiang XC, Gao JQ (2017): Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521: 167-175.
15.
Hessvik NP, Llorente A (2018): Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75: 193-208.
16.
Kumar S, Michael IJ, Park J, et al. (2018): Cloaked exosomes: Biocompatible, durable, and degradable encapsulation. Small 14: e1802052.
17.
Valadi H, Ekström K, Bossios A, et al. (2007): Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654-659.
18.
Zomer A, Vendrig T, Hopmans ES, et al. (2010): Exosomes: Fit to deliver small RNA. Commun Integr Biol 3: 447-450.
19.
Reza AMMT, Choi YJ, Yasuda H, Kim JH (2016): Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 6: 38498.
20.
McDonald MK, Tian Y, Qureshi RA, et al. (2014): Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155: 1527-1539.
21.
Hamidzadeh K, Christensen SM, Dalby E, et al. (2017): Macrophages and the recovery from acute and chronic inflammation. Annu Rev Physiol 79: 567-592.
22.
Das A, Sinha M, Datta S, et al. (2015): Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 185: 2596-2606.
23.
Willenborg S, Lucas T, van Loo G, et al. (2012): CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613-625.
24.
Labonte AC, Tosello-Trampont AC, Hahn YS (2014): The role of macrophage polarization in infectious and inflammatory diseases. Mol Cells 37: 275-285.
25.
Yunna C, Mengru H, Lei W, Weidong C (2020): Macrophage M1/M2 polarization. Eur J Pharmacol 877: 173090.
26.
Chabot S, Charlet D, Wilson TL, Yong VW (2001): Cytokine production consequent to T cell--microglia interaction: the PMA/IFN gamma-treated U937 cells display similarities to human microglia. J Neurosci Methods 105: 111-120.
27.
Xie C, Liu C, Wu B, et al. (2016): Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med 38: 148-160.
28.
Daigneault M, Preston JA, Marriott HM, et al. (2010): The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5: e8668.
29.
Chen Q, Ross AC (2004): Retinoic acid regulates cell cycle progression and cell differentiation in human monocytic THP-1 cells. Exp Cell Res 297: 68-81.
30.
Dong Q, Li Y, Chen J, Wang N (2020): Azilsartan suppressed LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR2/MyD88 signal pathway. ACS Omega 6: 113-118.
31.
Kuno S, Srinoun K, Penglong T (2020): The effects of Phorbol 12-myristate 13-acetate concentration on the expression of miR-155 and miR-125b and their macrophage function-related genes in the U937 cell line. J Toxicol Sci 45: 751-761.
32.
Pinto SM, Kim H, Subbannayya Y, et al. (2021): Comparative proteomic analysis reveals varying impact on immune responses in phorbol 12-myristate-13-acetate-mediated THP-1 monocyte-to-macrophage differentiation. Front Immunol 12: 679458.
33.
Sproston NR, El Mohtadi M, Slevin M, et al. (2018): The effect of C-reactive protein isoforms on nitric oxide production by U937 monocytes/macrophages. Front Immunol 9: 1500.
34.
Yasuda T (2011): Hyaluronan inhibits Akt, leading to nuclear factor-κB down-regulation in lipopolysaccharide-stimulated U937 macrophages. J Pharmacol Sci 115: 509-515.
35.
Bernardo ME, Fibbe WE (2013): Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392-402.
36.
López-García L, Castro-Manrreza ME (2021): TNF-α and IFN-γ participate in improving the immunoregulatory capacity of mesenchymal stem/stromal cells: Importance of cell-cell contact and extracellular vesicles. Int J Mol Sci 22: 9531.
37.
Gurunathan S, Kang MH, Kim JH (2021): A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine 16: 1281-1312.
38.
Mohammadpour H, Pourfathollah AA, Nikougoftar Zarif M, Hashemi SM (2016): Increasing proliferation of murine adipose tissue-derived mesenchymal stem cells by TNF-α plus IFNγ. Immunopharmacol Immunotoxicol 38: 68-76.
39.
Ferreira JR, Teixeira GQ, Neto E, et al. (2021): IL-1β-pre-conditioned mesenchymal stem/stromal cells’ secretome modulates the inflammatory response and aggrecan deposition in intervertebral disc. Eur Cell Mater 41: 431-453.
40.
Dominici M, Le Blanc K, Mueller I, et al. (2006): Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
41.
Demirayak B, Yüksel N, Çelik OS, et al. (2016): Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Exp Eye Res 151: 227-235.
42.
Vural B, Duruksu G, Vural F, et al. (2019): Effects of VEGF+ mesenchymal stem cells and platelet-rich plasma on inbred rat ovarian functions in cyclophosphamide-induced premature ovarian insufficiency model. Stem Cell Rev Rep 15: 558-573.
43.
Shaddox LM, Gonçalves PF, Vovk A, et al. (2013): LPS-induced inflammatory response after therapy of aggressive periodontitis. J Dent Res 92: 702-708.
44.
Jafarinia M, Alsahebfosoul F, Salehi H, et al. (2020): Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy. Immunol Invest 49: 758-780.
45.
Cheng Y, Cao X, Qin L (2020): Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy for sepsis. Front Immunol 11: 647.
46.
Kou M, Huang L, Yang J, et al. (2022): Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 13: 580.
47.
Dal Collo G, Adamo A, Gatti A, et al. (2020): Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells 38: 698-711.
48.
Lo Sicco C, Reverberi D, Balbi C, et al. (2017): Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl Med 6: 1018-1028.
49.
Liu L, Guo H, Song A, et al. (2020): Progranulin inhibits LPS-induced macrophage M1 polarization via NF-kB and MAPK pathways. BMC Immunol 21: 32.
50.
Cutolo M, Soldano S, Gotelli E, et al. (2021): CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res Ther 23: 306.
51.
Przybyla B, Gurley C, Harvey JF, et al. (2006): Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 41: 320-327.
52.
Sorensen JR, Kaluhiokalani JP, Hafen PS, et al. (2019): An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair. FASEB J 33: 10353-10368.
53.
Szittner Z, Papp K, Sándor N, et al. (2013): Application of fluorescent monocytes for probing immune complexes on antigen microarrays. PLoS One 8: e72401.
54.
Brosseau C, Colas L, Magnan A, Brouard S (2018): CD9 tetraspanin: A new pathway for the regulation of inflammation? Front Immunol 9: 2316.
55.
Akuthota P, Melo RC, Spencer LA, Weller PF (2012): MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains. Am J Respir Cell Mol Biol 46: 188-195.
56.
Wang XQ, Evans GF, Alfaro ML, Zuckerman SH (2002): Down-regulation of macrophage CD9 expression by interferon-gamma. Biochem Biophys Res Commun 290: 891-897.
57.
Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010): Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5: e9016.
58.
Yu Y, Yoo SM, Park HH, et al. (2019): Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis. J Tissue Eng Regen Med 13: 1792-1804.
59.
Liang X, Ding Y, Zhang Y, et al. (2014): Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23: 1045-1059.