1. Guinot JL, Rembielak A, Perez-Calatayud J et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol 2018; 126: 377-385.
2.
Skowronek J. Brachytherapy in the treatment of skin cancer: An overview. Postepy Dermatol Alergol 2015; 32: 362-367.
3.
Rowe DE, Carroll RJ, Day CL. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J Dermatol Surg Oncol 1989; 15: 424-431.
4.
Rowe DE, Carroll RJ, Day CL. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J Am Acad Dermatol 1992; 26: 976-990.
5.
Guix B, Finestres F, Tello JI et al. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int J Radiat Oncol Biol Phys 2000; 47: 95-102.
6.
Kowalik Ł, Łyczek J, Sawicki M et al. Individual applicator for brachytherapy for various sites of superficial malignant lesions. J Contemp Brachytherapy 2013; 5: 45-49.
7.
Gauden R, Pracy M, Avery AM et al. HDR brachytherapy for superficial non-melanoma skin cancers. J Med Imaging Radiat Oncol 2013; 57: 212-217.
8.
Ghaly M, Dannenberg H, Satchwill K et al. HDR brachytherapy with standardized surface applicators in the treatment of superficial malignant skin lesions. Volume 72, Issue 1, Supplement, S505-S506, September 01, 2008.
9.
Niu H, His WC, Chu JCH et al. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy. Med Phys 2004; 31: 3372-3377.
10.
Köhler-Brock A, Prager W, Pohlmann S et al. The indications for and results of HDR afterloading therapy in diseases of the skin and mucosa with standardized surface applicators (the Leipzig applicator). Strahlenther Onkol 1999; 175: 170-174.
11.
Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424.
12.
Bath-Hextall F, Leonardi-Bee J, Smith C et al. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Int J Cancer 2007; 121: 2105-2108.
13.
Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. Lancet 2010; 375: 673-658.
14.
Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 2007; 4: 462-469.
15.
Rodriguez S, Santos M, Richart J et al. High-dose-rate brachytherapy in skin cancers: Patient convenience, local control and cosmetical results. Brachytherapy 2008; 7: 159.
16.
Łogodziec W, Ślosarek K, Malicki J. Dose-rate distribution under partially shielded beams. Strahlenther Onkol 1990; 166: 733-737.
17.
Poltorak M, Banatkiewicz P, Poltorak L et al. Brachytherapy and 3D printing for skin cancer: A review paper. J Contemp Brachytherapy 2024; 16: 156-169.
18.
Gross B, Lockwood SY, Spence DM. Recent advances in analytical chemistry by 3D printing. Anal Chem 2017; 89: 57-70.
19.
Capel AJ, Rimington RP, Lewis MP, Christie SDR. 3D printing for chemical, pharmaceutical and biological applications. Nat Rev Chem 2018. doi: 10.1038/s41570-018-0058-y.
20.
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9: 4.
21.
Gauvin R, Chen YC, Lee JW et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012; 33: 3824-3834.
22.
Goh GL, Zhang H, Chong TH et al. 3D printing of multilayered and multimaterial electronics: A review. Adv Electron Mater 2021; 7.
23.
Ali MH, Issayev G, Shehab E et al. A critical review of 3D printing and digital manufacturing in construction engineering. Rapid Prototyp J 2022; 28: 1312-1324.
24.
Xu N, Ye X, Wei D et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces 2014; 6: 14952-14963.
25.
Lakkala P, Munnangi SR, Bandari S et al. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X 2023; 5: 100159.
26.
Aljohani W, Ullah MW, Zhang X et al. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107: 261-275.
27.
Eichholz KF, Pitacco P, Burdis R et al. Integrating melt electrowriting and fused deposition modeling to fabricate hybrid scaffolds supportive of accelerated bone regeneration. Adv Healthc Mater 2024; 13: e2302057.
28.
Picco CJ, Utomo E, McClean A et al. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions. Int J Pharm 2023; 631: 122477.
29.
Kempin W, Franz C, Koster LC et al. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm 2017; 115: 84-93.
30.
Popov VV, Muller-Kamskii G, Kovalevsky G et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett 2018; 8: 337-344.
31.
Dekker TJ, Steele JR, Federer AE et al. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 2018; 39: 916-921.
32.
Huo W, Ding Y, Sheng C et al. Application of 3D printing in cervical cancer brachytherapy. J Radiat Res Appl Sci 2022; 15: 18-24.
33.
Ricotti R, Vavassori A, Bazani A et al. 3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage. Phys Med 2016; 32: 1698-1706.
34.
Poltorak M, Banatkiewicz P, Poltorak L et al. Quantitative dosimetric analysis with independent software solutions and comprehensive treatment plan parameter evaluation. SSRN 2024.
35.
Wong S, Kaur A, Back M et al. An ultrasonographic evaluation of skin thickness in breast cancer patients after postmastectomy radiation therapy. Radiat Oncol 2011; 6: 9.
36.
Kišonas J, Venius J, Grybauskas M et al. Acute radiation dermatitis evaluation with reflectance confocal microscopy: A prospective study. Diagnostics 2021; 11: 1670.