Current issue
Archive
About the journal
Editorial board
Abstracting and indexing
Subscription
Contact
Instructions for authors
Publication charge
Ethical standards and procedures
Editorial System
Submit your Manuscript
|
1/2021
vol. 102 abstract:
RESEARCH PAPERS
Integrating expression data and genomic sequences to investigate the transcriptional regulation in barley in response to abiotic stress
Azar Delavari
1
,
Zahra Zinati
1
,
Sima Sazegari
2
,
Ahmad Tahmasebi
2
BioTechnologia vol. 102 (1) C pp. 21–32 C 2021
Online publish date: 2021/03/31
View
full text
Get citation
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
Abiotic stress responses are regulated critically at the transcriptional level. Clarifying the intricate mechanisms that regulate gene expression in response to abiotic stress is crucial and challenging. For this purpose, the factors that regulate gene expression and their binding sites in DNA should be determined. By using bioinformatics tools, the differentially expressed probe sets were studied. A meta-analysis of transcriptomic responses to several abiotic stresses in barley was performed. Motif enrichments revealed that AP2/ERF (APETALA2/Ethylene-Responsive Factor) has the most frequent binding sites. We found that the bHLH transcription factor family has the highest number of transcription factor members. Moreover, network construction revealed that AP2 has the highest number of connections with other genes, which indicates its critical role in abiotic stress responses. The present research further predicted 49 miRNAs belonging to 23 miRNA families. This study identified the probable conserved and enriched motifs, which might have a role in the regulation of differentially expressed genes under abiotic stresses. In addition to shedding light on gene expression regulation, a toolbox of available promoters for genetic engineering of crop plants under such abiotic stresses was developed.
keywords:
barley, abiotic stress, transcriptomics analysis, motif discovery, motif enrichment, regulatory gene set |