1. Elkhawaga AA, Hetta HF, Osman NS, et al. (2020): Emergence of Cronobacter sakazakii in cases of neonatal sepsis in upper Egypt: First report in North Africa. Front Microbiol 11: 215.
2.
El-Hefnawy SM, Mostafa RG, El Zayat RS, et al. (2021): Biochemical and molecular study on serum miRNA-16a and miRNA-451 as neonatal sepsis biomarkers. Biochem Biophys Rep 25: 100915.
3.
Fouda E, Elrazek Midan DA, Ellaban R, et al. (2021): The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem Biophys Rep 26: 100988.
4.
Serna E, Parra-Llorca A, Panadero J, et al. (2021): miRNomic signature in very low birth-weight neonates discriminates late-onset gram-positive sepsis from controls. Diagnostics (Basel) 11: 1389.
5.
Zhou Y, Wang Y, Li Q, et al. (2022): Downregulation of lncRNA NEAT1 alleviates sepsis-induced acute kidney injury. Cent Eur J Immunol 47: 8-19.
6.
Zhong J, Cheng B, Yang L, et al. (2021): LncRNA ZEB1-AS1 knockdown alleviates oxidative low-density lipoprotein-induced endothelial cell injury via the miR-590-5p/HDAC9 axis. Cent Eur J Immunol 46: 325-335.
7.
Bu L, Wang ZW, Hu SQ, et al. (2020): Identification of key mRNAs and lncRNAs in neonatal sepsis by gene expression profiling. Comput Math Methods Med 2020: 8741739.
8.
Song J, Yu R, Qi J, et al. (2021): Aberrant long non-coding RNA cancer susceptibility 15 (CASC15) plays a diagnostic biomarker and regulates inflammatory reaction in neonatal sepsis. Bioengineered 12: 10373-10381.
9.
Gao JD, Li RJ, Ma PL, et al. (2020): Knockdown of lncRNA HCP5 protects against cerebral ischemia/reperfusion injury by regulating miR-652-3p. J Biol Regul Homeost Agents 34: 893-900.
10.
Wang X, Liu Y, Rong J, et al. (2021): LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis. BMC Endocr Disord 21: 134.
11.
Yang C, Shangguan C, Cai C, et al. (2022): LncRNA HCP5 participates in the tregs functions in allergic rhinitis and drives airway mucosal inflammatory response in the nasal epithelial cells. Inflammation 45: 1281-1297.
12.
Kim JJ, Yun SW, Yu JJ, et al. (2017): A genome-wide association analysis identifies NMNAT2 and HCP5 as susceptibility loci for Kawasaki disease. J Hum Genet 62: 1023-1029.
13.
Ciccacci C, Perricone C, Ceccarelli F, et al. (2014): A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS One 9: e111991.
14.
Liu Y, Helms C, Liao W, et al. (2008): A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4: e1000041.
15.
Liu L, Wang H, Zhang X, et al. (2020): Identification of potential biomarkers in neonatal sepsis by establishing a competitive endogenous RNA network. Comb Chem High Throughput Screen 23: 369-380.
16.
Wang S, Chen L, Xu B (2022): ELF3-induced miR-182 inhibits adipogenic differentiation in Graves’ orbitopathy by targeting thyrotropin receptor. Cent Eur J Immunol 47: 308-322.
17.
Wu Y, Jiang W, Lu Z, et al. (2020): miR-138-5p targets sirtuin1 to regulate acute lung injury by regulation of the NF-kappaB signaling pathway. Can J Physiol Pharmacol 98: 522-530.
18.
An L, Yang T, Zhong Y, et al. (2021): Molecular pathways in sepsis-induced cardiomyocyte pyroptosis: Novel finding on long non-coding RNA ZFAS1/miR-138-5p/SESN2 axis. Immunol Lett 238: 47-56.
19.
Wei S, Gao Y, Dai X, et al. (2019): SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 316: F20-F31.
20.
Jia Y, Li Z, Cai W, et al. (2018): SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophys Acta Mol Basis Dis 1864: 784-792.
21.
Yu C, Qiu M, Yin H, et al. (2023): miR-138-5p promotes chicken granulosa cell apoptosis via targeting SIRT1. Anim Biotechnol 34: 2449-2458.
22.
Xu L, Zhang X, Li G, et al. (2023): Inhibition of SIRT1 by miR-138-5p provides a mechanism for inhibiting osteoblast proliferation and promoting apoptosis under simulated microgravity. Life Sci Space Res (Amst) 36: 59-69.
23.
Chen X, Chen Y, Dai L, et al. (2020): MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-kappaB pathway in neonatal sepsis. Biosci Rep 40: BSR20201267.
24.
Zhang S, Chen G, Wang X, et al. (2023): LncRNA INPP5F ameliorates stress-induced hypertension via the miR-335/Cttn axis in rostral ventrolateral medulla. CNS Neurosci Ther 29: 1830-1847.
25.
Solomon S, Akeju O, Odumade OA, et al. (2021): Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS One 16: e0255410.
26.
Zhang H, Li L, Xu L, et al. (2021): Clinical significance of the serum lncRNA NORAD expression in patients with neonatal sepsis and its association with miR-410-3p. J Inflamm Res 14: 4181-4188.
27.
Coit P, Kaushik P, Caplan L, et al. (2019): Genome-wide DNA methylation analysis in ankylosing spondylitis identifies HLA-B*27 dependent and independent DNA methylation changes in whole blood. J Autoimmun 102: 126-132.
28.
Gao C, Feng Z, Wang L, et al. (2021): The potential value of plasma receptor interacting protein 3 in neonates with culture-positive late-onset sepsis. BMC Infect Dis 21: 919.
29.
Liu XP, Huang YS, Kuo HC, et al. (2020): A novel nomogram model for differentiating Kawasaki disease from sepsis. Sci Rep 10: 13745.
30.
Veleminsky M, Jr., Stransky P, Veleminsky M, Sr., et al. (2008): Relationship of IL-6, IL-8, TNF and sICAM-1 levels to PROM, pPROM, and the risk of early-onset neonatal sepsis. Neuro Endocrinol Lett 29: 303-311.
31.
Mao YY, Su C, Fang CC, et al. (2021): Clinical significance of the serum miR-455-5p expression in patients with neonatal sepsis. Bioengineered 12: 4174-4182.
32.
Chen X, Chen Y, Dai L, et al. (2020): MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-kappaB pathway in neonatal sepsis. Biosci Rep 40: BSR20201267.
33.
Feng X, Zhan F, Luo D, et al. (2021): LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun 98: 283-298.
34.
Le Ribeuz H, Courboulin A, Ghigna MR, et al. (2020): In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respir Res 21: 186.
35.
Zhou ZB, Du D, Huang GX, et al. (2018): Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene 646: 203-209.
36.
Zhao D, Wang C, Liu X, et al. (2021): CircN4bp1 facilitates sepsis-induced acute respiratory distress syndrome through mediating macrophage polarization via the miR-138-5p/EZH2 axis. Mediators Inflamm 2021: 7858746.
37.
Zou S, Gao Y, Zhang S (2021): lncRNA HCP5 acts as a ce-RNA to regulate EZH2 by sponging miR1385p in cutaneous squamous cell carcinoma. Int J Oncol 59: 56.
38.
Wang G, Xie X, Yuan L, et al. (2020): Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway. Biofactors 46: 441-453.
39.
Jiang T, Chen Y, Gu X, et al. (2023): Review of the potential therapeutic effects and molecular mechanisms of resveratrol on endometriosis. Int J Womens Health 15: 741-763.
40.
Kolahdouz-Mohammadi R, Shidfar F, Khodaverdi S, et al. (2021): Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells. J Cell Mol Med 25: 1116-1127.
41.
Zeng M, Shen S, Zhang Y, et al. (2020): Combinatorial assessment of serum inflammation reactants in patients with acute urticaria accompanied by systemic symptoms. Indian J Dermatol 65: 67-68.
42.
Erdol MA, Civelek Eser F, Aslan AN, et al. (2022): The predictive value of epicardial fat volume for clinical severity of COVID-19. Rev Port Cardiol 41: 729-737.
43.
Messerer DAC, Vidoni L, Erber M, et al. (2020): Animal-free human whole blood sepsis model to study changes in innate immunity. Front Immunol 11: 571992.